Home
Class 12
MATHS
For any positive integer n , define fn...

For any positive integer `n` , define `f_n :(0,oo)rarrR` as `f_n(x)=sum_(j=1)^ntan^(-1)(1/(1+(x+j)(x+j-1)))` for all `x in (0, oo)` . Here, the inverse trigonometric function `tan^(-1)x` assumes values in `(-pi/2,pi/2)dot` Then, which of the following statement(s) is (are) TRUE? `sum_(j=1)^5tan^2(f_j(0))=55` (b) `sum_(j=1)^(10)(1+fj '(0))sec^2(f_j(0))=10` (c) For any fixed positive integer `n` , `(lim)_(xrarroo)tan(f_n(x))=1/n` (d) For any fixed positive integer `n` , `(lim)_(xrarroo)sec^2(f_n(x))=1`

A

`underset(j = 1)overset(5)sum tan^(2) (f_(j) (0)) = 55`

B

`underset(j =1)overset(10)sum (1 + f'_(j)(0)) sec^(2) (f_(j) (0)) = 10`

C

For any fixed positive inetger `n, underset(x rarr oo)("lim") tan (f_(n) (x)) = (1)/(n)`

D

For any fixed positive integer `n, underset(x rarr oo)("lim") sec^(2) (f_(n) (x)) = 1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

`f_(n) (x) = underset(j =1)overset(n)sum tan^(-1) ((1)/(1 + (x + j) (x + j -1)))`
`= underset(j =1)overset(n)sum tan^(-1) (((x + j) - (x + j -1))/(1+(x +j) (x+j -1)))`
`= underset(j=1)overset(n)sum [tan^(-1) (x + j)-tan^(-1) (x + j -1)]`
`:. f_(n) (x) = tan^(-1) (x + n) - tan^(-1) (x)`
(1) `f_(n) (0) = tan^(-1) (n)`
`rArr tan^(2) (f_(n) (0)) = tan^(2) (tan^(-1) n) = n^(2)`
`underset(j =1)overset(5)sum tan^(2) (f_(j) (0)) = underset(j=1)overset(5)sum j^(2) = (5 xx 6 xx 11)/(6) = 55`
(2) `f'_(n) (x) = (1)/(1 + (x + n)^(2)) - (1)/(1 + x^(2))`
`rArr f'_(n) (0) = (1)/(1+ n^(2)) -1`
`rArr 1 + f'_(n) (0) = (1)/(1 + n^(2))`
Also, `sec^(2) (f_(n) (0)) = sec^(2) (tan^(-1) (n)) = 1 + n^(2)`
Hence, `(1 + f'_(n) (0)). sec^(2) (f_(n)(0)) = ((1)/(1 + n^(2))) (1 + n^(2)) =1`
So, `underset(j =1)overset(10)sum (1 + f'_(i)(0)) sec^(2) (f_(i) (0)) = underset(i=1)overset(10)sum 1 = 10`
(3) `underset(x rarr oo)("lim") tan (f_(n)(x)) = underset(x rarroo)("lim") (n)/(1 + x (n + x)) = 0`
(4) `underset(x rarroo)("lim") sec^(2) (f_(n) (x)) = underset(x rarr oo)("lim") (1 + tan^(2) (f_(n) (x))) = 1`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise TRUE OR FALSE|1 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 10|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(a-x^(n))^(1/n),agt0 and n is a positive integer, then prove that f(f(x)) = x.

If f(x) = (p - x^n)^(1/n), p gt 0 and n is positive integer, then the value of f[f(x)]

If f(x)=(a-x^n)^(1/n)," where "a gt0 and n is a positive integer, show that f[f(x)]=x.

The least positive integer n for which ((1+i)/(1-i))^n=2/pisin^(-1)((1+x^2)/(2x))(xge0) is

f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)} is

If a_(0)=x,a_(n+1)=f(a_(n)), " where " n=0,1,2, …, then answer the following questions. If f(x)=(1)/(1-x), then which of the following is not true?

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1) =1 , then

lim_(xto0^(-)) (sum_(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where ninN and [.] denotes the greatest integer function, equals

suppose for every integer n, int_n^(n+1)f(x)dx=n^2 then the value of int_(-2)^4 f(x)dx is

If f(x+1)+f(x-1)=2f(x) and f(0)=0, then find f(n),n in N , is

CENGAGE PUBLICATION-INVERSE TRIGONOMETRIC FUNCTIONS-All Questions
  1. If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], th...

    Text Solution

    |

  2. The number of roots of the equation is x^2 -7x+12=0

    Text Solution

    |

  3. If the area enclosed by the curves f(x) = cos^(-1) (cos x) and g(x) = ...

    Text Solution

    |

  4. Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sq...

    Text Solution

    |

  5. The least value of (1+sec^(-1)x)(1+cos^(-1)x) is

    Text Solution

    |

  6. Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot If x satisfies the e...

    Text Solution

    |

  7. The number of integral values of x satisfying the equation tan^(-1) (3...

    Text Solution

    |

  8. Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x...

    Text Solution

    |

  9. If the equation sin^(-1)(x^2+x+1)+cos^(-1)(lambda x+1)=pi/2 has exactl...

    Text Solution

    |

  10. sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5)...

    Text Solution

    |

  11. The number of solutions of "cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c...

    Text Solution

    |

  12. If x, y , z are in A.P and tan^-1 x , tan^-1 y and tan^-1 z are also ...

    Text Solution

    |

  13. Let, tan^-1y=tan^-1x+tan^-1((2x)/(1-x^2)), where absx lt 1/sqrt3. Then...

    Text Solution

    |

  14. The value of cot(sum(n=1)^(23)cot^-1(1+sum(k=1)^n2k)) is

    Text Solution

    |

  15. If alpha=3sin^-1(6/(11)) and beta=3cos^-1(4/9), where the inverse trig...

    Text Solution

    |

  16. For any positive integer n , define fn :(0,oo)rarrR as fn(x)=sum(j=1...

    Text Solution

    |

  17. Match List I with List II and select the correct answer using the code...

    Text Solution

    |

  18. Match List I with List II and select the correct answer using the code...

    Text Solution

    |

  19. Let f:[0,4pi]vec[0,pi] be defined by f(x)=cos^(-1)(cosx)dot The number...

    Text Solution

    |

  20. The number of real solution of the equation tan^(-1) sqrt(x^2-3x +2) +...

    Text Solution

    |