Home
Class 12
MATHS
Find the sum sum(r=1)^(n) r^(2) (""^(n)C...

Find the sum `sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1))`.

Text Solution

Verified by Experts

The correct Answer is:
`(n(n+1)(n+2))/(6)`

`t_(r)=r^(2)(.^(n)C_(r))/(.^(n)C_(r)-1)`
`=r^(2)(n-r+1)/(r)`
`=r(n+1-r)`
`=(n+1)r-r^(2)`
`:.` Sum `= (n+1)underset(r=1)overset(n)sumr-underset(r=1)overset(n)sumr^(2)`
`=(n+1)(n(n+1))/(2)-(n(n+1)(2n+1))/(6)`
`= (n(n+1))/(6){3(n+1) - (2n+1)}`
`= (n(n+1)(n+2))/(6)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.4|13 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the sum sum_(r=0) .^(n+r)C_r .

Find the sum sum_(r=1)^n r^n (^nC_r)/(^nC_(r-1)) .

Find the sum sum_(r=1)^n r(r+1)(r+2)(r+3)

Find the sum of sum_(r=1)^n r* (nC_r)/(nC_(r-1)

.^(n-1)C_(r)+^(n-1)C_(r-1)=

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .

Find the value of sum_(r=1)^(n) (r)/(1+r^(2)+r^(4))

Find the sum sum_(r=1)^n1/((a r+b)(a r+a+b))dot