Home
Class 12
MATHS
Prove that (1^2)/3""^n C1+(1^2+2^2)/5""^...

Prove that `(1^2)/3""^n C_1+(1^2+2^2)/5""^n C_2+(1^1+2^2+3^2)/7""^n C_3+... +(1^2+2^2++n^2)/(2n+1)""^n C_n`=`((n(n+3))/6)*2^(n-2)dot`

Text Solution

Verified by Experts

`underset(r=0)overset(n)sumr^(2).^(n)C_(r)p^(r)q^(n-r)`
`= underset(r=0)overset(n)sumnr.^(n-1)C_(r-1)S=underset(r=1)overset(n)sum(1^(2)+2^(2)+"...."+r^(3))/(2r+1).^(n)C_(r)`
`= underset(r=1)overset(n)sum(r(r+1)(2r+1))/(6(2r+1)).^(n)C_(r)`
`= 1/6underset(r=1)overset(n)sumr(r+1).^(n)C_(r)`
`= 1/6underset(r=1)overset(n)sum(r+1).n..^(n-1)C_(r-1)`
`=1/6n underset(r=1)overset(n)sum((r-1)+2)^(n-1)C_(r-1)`
`=1/6n.underset(r=1)overset(n)sum((r-1)..^(n-1)C_(r-1)+2..^(n-1)C_(r-1))`
`= 1/6n.underset(r=1)overset(n)sum((n-1)..^(n-2)C_(r-2)+2..^(n-1)C_(r-1))`
`=1/6n.(n-1).2^(n-2)+(n)/(3).2^(n-1)=1/6n(n+3)2^(n-2)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.5|8 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Prove that ^nC_0 "^(2n)C_n-^nC_1 ^(2n-2)C_n +^nC_2 ^(2n-4)C_n =2^n

Prove that .^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2- .. =(-1)^n .

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

Prove that 1-^n C_1(1+x)/(1+n x)+^n C_2(1+2x)/((1+n x)^2)-^n C_3(1+3x)/((1+n x)^3)+....(n+1) terms =0

Let S=(2)/(1)""^(n)C_(0)+(2^(2))/(2)""^(n)C_(1)+(2)/(3^(3))""^(n)C_(2)+…+(2^(n+1))/(n+1)""^(n)C_(n) . Then S equals-

Prove that (2n!)/(n!)={1.3.5.....(2n-1)}2^n

Prove that .^n C_0+^n C_3+^n C_6+=1/3(2^n+2cos((npi)/3)) .

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot