Home
Class 12
MATHS
If p+q=1, then show that sum(r=0)^nr^2^n...

If p+q=1, then show that `sum_(r=0)^nr^2^nC_rp^rq^(n-r)=npq+n^2p^2`

Text Solution

Verified by Experts

`underset(r=0)overset(n)sumr^(2).^(n)C_(r)p^(r)q^(n-r)`
`= underset(r=0)overset(n)sumnr.^(n-1)C_(r-1)p^(r)q^(n-r)`
`= n underset(r=0)overset(n)sum[(r-1)+1)]^(n-1)C_(r-1)p^(r)q^(n-r)`
`= n underset(r=0)overset(n)sum[(r-1)^(n-1)C_(r-1)+.^(n+1)C_(r-1)]p^(r)q^(n-r)`
`= n underset(r=0)overset(n)sum[(n-1).^(n-2)C_(r-1)p^(r-2)q^(n-r)+np underset(r=0)overset(n)sum.^(n-1)C_(r-1)p^(r-1)]q^(n-r)`
`= p^(2)n(n-1)(p+q)^(n-2)+np(p+q)^(n-1)`
`=p^(2)n(n-1)+np`
`=p^(2)n^(2)+np(1-p)`
`= p^(2)n^(2)+npq`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.5|8 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Find the sum of sum_(r=1)^n r* (nC_r)/(nC_(r-1)

Find the sum sum_(r=1)^n r^n (^nC_r)/(^nC_(r-1)) .

Prove that sum_(r=0)^n r(n-r)(.^nC_ r)^2=n^2(.^(2n-2)C_n)dot

If 2lerlen show that ^nC_r +2 ^nC_(r-1) +^nC_(r-2)=^(n+2)C_r

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

Prove that sum_(r=0)^n^n C_r(-1)^r[i+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+1)cos(npi//4),w h e r ei=sqrt(-1)dot

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .