Home
Class 12
MATHS
Prove that 1-^n C1(1+x)/(1+n x)+^n C2(1+...

Prove that `1-^n C_1(1+x)/(1+n x)+^n C_2(1+2x)/((1+n x)^2)-^n C_3(1+3x)/((1+n x)^3)+....(n+1) terms =0`

Text Solution

Verified by Experts

`S = 1 - .^(n)C_(1)((1+x)/(1+nx))+.^(n)C_(2)(1+2x)/((1+nx)^(2))+"...."`
`=underset(r=0)overset(n)sum(-1)^(r).^(n)C_(r)((1+rx))/((1+nx)^(r))`
`=underset(r=0)overset(n)sum(-1)^(r)[(.^(n)C_(r))/((1+nx)^(r))+(.^(n)C_(r)rx)/((1+nx)^(r))]`
`= underset(r=0)overset(n)sum.^(n)C_(r)(-(1)/(1+nx))^(r)+xunderset(r=0)overset(n)sum(n..^(n-1)C_(r-1))/((1+nx)^(r)) (-1)^(r)`
`= [1-1/(1+nx)]^(n)-((nx)/(1+nx))underset(r=0)overset(n)sum.^(n-1)C_(r-1)(-(1)/(1+nx))^(r-1)`
`=[1-(1)/(1+nx)]^(n)-((nx)/(1+nx))[1-(1)/(nx)]^(n-1)`
`= [1-(1)/(1+nx)]^(n-1)[1-(1)/(1+nx)-(nx)/(1+x)]=0`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.5|8 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that .^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2- .. =(-1)^n .

Show : x-^(n)C_(1)(x+y)+^(n)C_(2)(x+2y)-^(n)C_(3)(x+3y)+....=0

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Prove that (""^n C_0)/x-(""^n C_1)/(x+1)+(""^n C_2)/(x+2)-.....+(-1)^n(""^n C_n)/(x+n)=(n !)/(x(x+1) . . . (x-n)), where n is any positive integer and x is not a negative integer.

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Find the value of (1+x)^(n)+^(n)C_(1)(1+x)^(n-1).(1-x)+^(n)C_(2)(1+x)^(n-2)(1-x)^(2)+.....+(1-x)^(n)

Prove that .^(n)C_(1) - (1+1/2) .^(n)C_(2) + (1+1/2+1/3) .^(n)C_(3) + "…" + (-1)^(n-1) (1+1/2+1/3 + "…." + 1/n) .^(n)C_(n) = 1/n

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that 1+(1+x)+(1+x+x^(2))+(1+x+x^(2)+x^(3))+...+ to n terms =(n)/(1-x)-(x(1-x^(n)))/(1-x)^(2)