Home
Class 12
MATHS
If (1+x)^(15)=C0+C1x+C2x^2++C(15)x^(15),...

If `(1+x)^(15)=C_0+C_1x+C_2x^2++C_(15)x^(15),` then find the sum of `C_2+2C_3+3C_4++14 C_(15)dot`

Text Solution

Verified by Experts

The correct Answer is:
`13 xx 12^(14) + 1`

`C_(2)+2C_(3)+3C_(4)+"……."+14C_(15)`
`= underset(r=1)overset(14)sumr.^(15)C_(r+1)`
`= underset(r=1)overset(14)sum[(r+1)-1].^(15)C_(r+1)`
`= underset(r=1)overset(14)sum[(r+1)^(15)C_(r+1)-.^(15)C_(r+1)]`
`=underset(r=1)overset(14)sum(15.^(14)C_(r)-.^(15)C_(r+1))`
`= 15(2^(14)-1)-(2^(15)-.^(15)C_(0) - .^(15)C_(1))`
` = 13 xx 2^(14) + 1`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.5|8 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + "….." + C_(n)x^(n) , then find the value of C_(0)+C_(2)+C_(4)+C_(6)+........ ​ ​

If sin C =( 15)/(17) , then find cos C ,

Find the sum C_0+3C_1+3^2C_2+...+3^n C_ndot

If (1+x)^(15)=C_0+C_1x+C_2x^2+……..+C_(15)x^(15) then ,^15C_0^2-^15C_1^2+^15C_2 ^2 -^15C_3 ^2 +……-^15C_(15) ^2 is equal to

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0).C_(n)+C_(1).C_(n-1)+C_(2).C_(n-2)+....+C_(n).C_(0)=((2n)!)/((n!)^(2))

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(1))/(2)+(C_(3))/(4)+(C_(5))/(6)+....=(2^(n)-1)/(n+1)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(1))/(C_(0))+(2C_(2))/(C_(1))+(3C_(3))/(C_(2))+....+(nC_(n))/(C_(n-1))=(n(n-1))/(2)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)C_(1)+C_(1)C_(2)+C_(2)C_(3)+.....+C__(n-1)C_(n)=((2n)!)/((n+1)!(n-1)!)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)+4C_(1)+8C_(2)+12C_(3)+......+4nC_(n)=1+n.2^(n+1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)