Home
Class 12
MATHS
Prove that :^(10)C1(x-1)^2-^(10)C2(x-2)^...

Prove that `:^(10)C_1(x-1)^2-^(10)C_2(x-2)^2+^(10)C_3(x-3)^2 .....-^(10)C_(10)(x-10)^2=x^2`

Text Solution

Verified by Experts

`S = .^(10)C_(1)(x-1)^(2).^(10)C_(2)(x-2)^(2)+.^(10)C_(3)(x-3)^(2)+"...."-.^(10)C_(10)(x-10)^(10)`
`= underset(r=1)overset(10)sum(-1)^(r+1).^(10)C_(r)(x-r)^(2)`
`= underset(r=1)overset(10)(-1)^(r+1).^(10)C_(r)(x^(2) - 2xr+r^(2))`
`= underset(r=1)overset(10)sum(-1)^(r+1)C_(r)(x^(2)) - 2x underset(r=1)overset(10)sum(-1)^(r+1).^(10)C_(r)r + underset(r=1)overset(10)sum(-1)^(r+1).^(10)C_(r)r^(2)`
`= x^(2) underset(r=1)overset(10)sum (-1)^(r+1) .^(10)C_(r) - 2x(0) + 0`
`=x^(2)(.^(10)C_(1) - .^(10)C_(2) + .^(10)C_(3)-.^(10)C_(4)+"...."-.^(10)C_(10))`
`= x^(2)(1) = x^(2)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.5|8 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Let X=(\ ^(10)C_1)^2+2(\ ^(10)C_2)^2+3(\ ^(10)C_3)^2+\ ddot\ +10(\ ^(10)C_(10))^2 , where \ ^(10)C_r , r in {1,\ 2,\ ddot,\ 10} denote binomial coefficients. Then, the value of 1/(1430)\ X is _________.

Find the value of (.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9)) .

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

Find the sum 2..^(10)C_(0) + (2^(2))/(2).^(10)C_(1) + (2^(3))/(3).^(10)C_(2)+(2^(4))/(4).^(10)C_(3)+"...."+(2^(11))/(11).^(10)C_(10) .

"^(30)C_(0)*^(20)C_(10)+^(31)C_(1)*^(19)C_(10)+^(32)C_(2)*18C_(10)+....^(40)C_(10)*^(10)C_(10) is equal to

If (1+x)^(n)=C_(0)+C_(1)+x+C_(2)x^(2)+...+C_(n) x^(n) Show that C_(1)^(2)+2*C_(2)^(2)+3*C_(3)^(2)....+n*C_(n)^(2)=((2n-1)!)/([(n-1)!]^(2))

Find value of the series .^(10)C_1+^(10)C_2+...+^(10)C_9dot

The sum of series .^(20)C_0-^(20)C_1+^(20)C_2-^(20)C_3++^(20)C_10 is 1/2 .^(20)C_10 b. 0 c. .^(20)C_10 d. -^(20)C_10

If underset(xrarroo)"lim"((1+x)^(10)+(x+2)^(10)+....+(x+100)^(10))/(x^(10)+10^(10)) =K^(2) , then the value of K will be -

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(1))/(C_(0))+(2C_(2))/(C_(1))+(3C_(3))/(C_(2))+....+(nC_(n))/(C_(n-1))=(n(n-1))/(2)