Home
Class 12
MATHS
Prove that 1/(n+1)=(.^n C1)/2-(2(.^n C2)...

Prove that `1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1)` .

Text Solution

Verified by Experts

`S = (.^(n)C_(1))/(2)-(2(.^(n)C_(3)))/(3)+(3(.^(n)C_(3)))/(4)"...."+(-1)^(n+1)(n(.^(n)C_(n)))/(n+1)`
` = underset(r=1)overset(n)sum (r.^(n)C_(r))/((r+1))(-1)^(r+1)`
`= underset(r=1)overset(n)sum r(.^(n+1)C(r+1))/(n+1)(-1)^(r+1)`
`= 1/(n+1) underset(r=1)overset(n)sum [(r+1).^(n+1)C_(r+1)(-1)^(r+1)-.^(n+1)C_(r+1)(-1)^(r+1)]`
`= (1)/(n+1)underset(r=1)overset(n)sum[-(n+1).^(n)C_(r)(-1)^(r)-.^(n+1)C_(r+1)(-1)^(r+1)]`
`= -[-.^(n)C_(2)-.^(n)C_(3)+"...."+(-1)^(n).^(n)C_(n)]`
` - 1/(n+1)[.^(n+1)C_(2) - .^(n+1)C_(3)+".....(-1)^(n+1).^(n+1)C_(n+1)]`
`= - [(1-1)^(n)-1]-(1)/(n+1)[(1-1)^(n+1) - .^(n+1)C_(0)+.^(n+1)C_(1)]`
` = 1 - (1)/(n+1)[(n+1)-1]`
`1 - (n)/(n+1)= (1)/(n+1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.5|8 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that .^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2- .. =(-1)^n .

Prove that (""^n C_0)/x-(""^n C_1)/(x+1)+(""^n C_2)/(x+2)-.....+(-1)^n(""^n C_n)/(x+n)=(n !)/(x(x+1) . . . (x-n)), where n is any positive integer and x is not a negative integer.

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot

Prove that 1/(m !).^n C_0+n/((m+1)!).^n C_1+(n(n-1))/((m+2)!).^n C_2+......+(n(n-1).....2xx1)/((m+n)!).^n C_n= ((m+n+1)(m+n+2)....(m+2n))/((m+n)!)

Prove that (C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4+....+((-1)^(n-1))/n C_n=1+1/2+1/3+...+1/n