Home
Class 12
MATHS
Show that sqrt3 =1+1/3+(1/3).(3/6)+(1/3)...

Show that `sqrt3` =1+`1/3`+(`1/3`).(`3/6`)+(`1/3`).(`3/6`).(`5/9`)+.......

Text Solution

Verified by Experts

`sqrt(3) = (1/3)^(-1//2)`
`= (1-2/3)^(-1//2)`
`= +(-1/2)(-2/3)+((-1/2)(-1/2-1))/(2!) (-2/3)^(2)+((-1/2)(-1/2-1)(-1/2-2))/(3!) (-2/3)^(3) + "....."`
`= 1+1/2.(2)/(3)+1/2.(3/2).(2/3)^(2).(1)/(2)+1/2.(3)/(2).(5)/(2).(2/3)^(3).(1)/(3!)+"....."`
`= 1+1/3+1/3(3/6)+(1)/(3)(3/6)(5/9)+"...."`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Concept Application Exercise 8.7|9 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

The sum of the infinite series 1+(1)/(3)+(1.3)/(3.6)+(1.3.5)/(3.6.9)+(1.3.5.7)/(3.6.9.12)+... is equal to

Show that lim_(x to 0)((1+x)^(9)-1)/((1+x)^(6)-1)=(3)/(2)

Show that log_(3)log_(2)log_(sqrt3)81 = 1

Show that cot 7(1^@/2)=2+sqrt2+sqrt3+sqrt6

Show that , ((-1+sqrt(-3))/(2))^(19)+((-1-sqrt(-3))/(2))^(19)=-1.

The sum of the infinite series ((1)/(3))^(2)+(1)/(3)((1)/(3))^(4)+(1)/(5)((1)/(3))^(6)+...... is

root(3)(8 (sqrt3 -1)^(3))=

Prove be mathematical induction : (1)/(3.6)+(1)/(6.9)+(1)/(9.12)+...+(1)/(3n(3n+3))=(n)/(9(n+1))

The value of 6+(log)_(3/2)[1/(3sqrt(2)) * sqrt{ (4 - 1/(3sqrt(2))) sqrt(4 - 1/(3sqrt(2))....... } is ...............

Consider f: R _(+) to [-5, oo) given by f (x) = 9x ^(2) + 6x -5. Show that f is invertible with f ^(-1) (y) = ((sqrt(y +6) -1)/(3)).