Home
Class 12
MATHS
If n is a possible integer, then (sqrt3+...

If n is a possible integer, then `(sqrt3+1)^(2n)-(sqrt3-1)^(2n)` is

A

an irrational number

B

an odd positive integer

C

an even positive integer

D

a rational number other than positiveintegers

Text Solution

Verified by Experts

The correct Answer is:
A

`(3sqrt(3) + 1)^(2n)- (sqrt(3) - 1)^(2n)`
`=2[.^(2n)C_(1)(sqrt(3))^(2n-1)+.^(2n)C_(3)(sqrt(3))^(2n-3)+.^(2n)C_(5)(sqrt(3))^(2n-5) + "….."]`
= an irrational number
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Numerical|25 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If n is a positive integer , then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is -

If n (> 1)is a positive integer, then show that 2^(2n)- 3n - 1 is divisible by 9.

If n be any integer, then n(n+1) (2n+1) is-

If n is a positive integer then using the indentiy (1+x)^(n)=(1+x)^(3)(1+x)^(n-3) , prove that ""^(n)C_(r)=""^(n-2)C_(r)+3*""^(n-3)C_(r-1)*""^(n-3)C_(r-2)+""^(n-3)C_(r-3)

If i=sqrt-1 and n is a positive integer, then i^(n)+i^(n+1)+i^(n+3_ is equal to

If n is a positive integer and U_(n) = (3 + sqrt5)^(n) + (3 - sqrt5)^(n) , then prove that U_(n + 1) = 6U_(n) - 4U_(n -1), n ge 2

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2)^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

If n is a positive integer, prove that 1-2n+(2n(2n-1))/(2!)-(2n(2n-1)(2n-2))/(3!)+.......+(-1)^(n-1)(2n(2n-1)(n+2))/((n-1)!)= (-1)^(n+1)(2n)!//2(n !)^2dot

If n is positive integer and "cos" (pi)/(2n)+"sin" (pi)/(2n) =(sqrt(n))/(2) , then prove that 4 le n le 8

If n is a positive integer (gt1) ,show that , 3^(2n+2)-8n-9 is always divisible by 64.