Home
Class 12
MATHS
If the coefficients of x^3 and x^4 in th...

If the coefficients of `x^3` and `x^4` in the expansion of `(1""+a x+b x^2)""(1-2x)^(18)` in powers of x are both zero, then (a, b) is equal to (1) `(16 ,(251)/3)` (3) `(14 ,(251)/3)` (2) `(14 ,(272)/3)` (4) `(16 ,(272)/3)`

A

`(16,251/3)`

B

`(14,251/3)`

C

`(14, 272/3)`

D

`(16,272/3)`

Text Solution

Verified by Experts

The correct Answer is:
D

`(1+ax+bx^(2))(1-2x)^(18)`
`= 1(1-2x)^(18)+ax(1-2x)^(18)+bx^(2)(1-2x)^(18)` ltbr gt Coefficient of `x^(3) : (-2)^(3) .^(18)C_(3) + a(-2)^(2).^(18)C_(2)+b(-2).^(18)C_(1)=0`
`(4xx(17xx16))/((3xx2)) - 2a.(17)/(2)+b = 0" "(1)`
Coefficient of `x^(4) : (-2)^(4).^(18)C_(4)6+a(-2)^(3).^(18)C_(3)+b(-2)^(2).^(18)C_(2) = 0`
`(4 xx 20 ) - 2a . (16)/(3) + b = 0`
From equation (1) and (2) , we get
`4((17xx8)/(3)-20)+2a(16/3-17/2) = 0`
`rArr a = 16`
`rArr b = (2xx16xx16)/(3) - 80 = 272/3`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Numerical|25 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

If the cofficients of x^(3)andx^(4) in the expansion of (1+ax+bx^(2))(1-2x)^(18) in powers pf x are both zero , the (a , b) is equal to -

The coefficient of x^3 in the expansion of (1-x+x^2)^5 is

The coefficient of x^(-10) in the expansion of (x^2-1/x^3)^10 is

The coefficient of x^4 in the expansion of (1+x+x^2+x^3)^11 is

The coefficients of x^7 in the expansion of (x^3+3x+3/x+1/x^3)^5 is

Find the coefficient of x^7 in the expansion of (1+3x-2x^3)^(10)dot

Determine the coefficient of x^4 in the expansion of (1+x+x^2+x^3)^n .

The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(100)) is

Find the coefficient of x^(13) in the expansion of (1-x)^5xx(1+x+x^2+x^3)^4dot

The coefficient of x^17 in the expansion of(x-1)(x-2)(x-3)….(x-18) is