Home
Class 12
MATHS
For r = 0, 1,"…..",10, let A(r),B(r), an...

For `r = 0, 1,"…..",10`, let `A_(r),B_(r)`, and `C_(r)` denote, respectively, the coefficient of `x^(r )` in the expansion of `(1+x)^(10), (1+x)^(20)` and `(1+x)^(30)`. Then `sum_(r=1)^(10) A_(r)(B_(10)B_(r ) - C_(10)A_(r ))` is equal to

A

`B_(10) - C_(10)`

B

`A_(1)(B_(10)^(2) - C_(10)A_(10))`

C

0

D

`C_(10) - B_(10)`

Text Solution

Verified by Experts

The correct Answer is:
D

`A_(r), B_(r)`, and `C_(r)` denotes, respectively, the coefficient of `x^(r)` in the expansion of `(1+x)^(10), (1+x)^(20)` and `(1+x)^(30)`.
`:. A_(r) = .^(10)C_(r),B_(r)=.^(20)C_(r),C_(r)=.^(30)C_(r)`
`:. underset(r=1)overset(10)sumA_(r)(B_(10)B_(r)-C_(10)A_(r))`
`= B_(10)underset(r=1)overset(10)sumA_(r)B_(r)-C_(10)underset(r=1)overset(10)sum(A_(r))^(2)`
`= B_(10)underset(r=1)overset(10)sum.^(10)C_(r).^(20)C_(r)-C_(10)underset(r=1)overset(10)sum(.^(10)C_(r))^(2)`
`=B_(10)underset(r=1)overset(10)sum.^(10)C_(r).^(20)C_(20-r)-C_(10)underset(r=1)overset(10)sum(.^(10)C_(r))^(2)`
`= B_(10)[(underset(r=0)overset(10)sum.^(10)C_(r).^(20)C_(20-r))-1]-C_(10)[(underset(r=0)overset(10)sum(.^(30)C_(r))^(2))-1]`
`=B_(10)[.^(30)C_(2)-1]-C_(10)[.^(20)C_(10) - 1]`
`( :'.^(n)C_(0)^(2)+.^(n)C_(1)^(2)+.^(n)C_(2)^(2)+"...."+.^(n)C_(n)^(2)=.^(2n)C_(n))`
`=[B_(10).^(30)C_(20)-C_(10).^(20)C_(10)]+[C_(10)-B_(10)]`
`=[.^(20)C_(10).^(30)C_(20)-.^(30)C_(10).^(20)C_(10)] + [C_(10) - B_(10)]`
`= C_(10) - B_(10)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Numerical|25 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Prove that the coefficient of x^r in the expansion of (1-2x)^(-1/2) is (2r!)/[(2^r)(r!)^2]

The value of sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2) is equal to

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

If a_(r) be the coefficient of x^(r) in the expression of (1+bx^(2)+cx^(3))^(n),"then prove that" , a_(3)=nc

If the coefficient of x^(r)andx^(r+1) are equal in the expansion of (1+x)^(2n+1) , then find the value of r .

Find the coefficient of x^(25) in expansion of expression sum_(r=0)^(50)^(50)C_r(2x-3)^r(2-x)^(50-r) .

If a _(r) is the coefficient of x^r in the expansion of (1+ x+x^(2)) ^(n), then the value of a_(1)- 2a_(2) +3a_(3)-4a_(4)+…-2na_(2n) is -

If a_(r) be the coefficient of x^(r) in the expression (1+bx^(2)+cx^(3))^(n)" ,Prove that " 2na_(4)=(n-1)a_(2)^(2)

Show that the sum of the coefficient of first (r+1) terms in the expansions of (1-x)^(-n) is ((n+1)(n+2)...(n+r))/(r!)

The coefficient of x^m in (1+x)^r+ (1+x)^(r+1)+(1+x)^(r+2)+………+(1+x)^n , rlemlen is