Home
Class 12
MATHS
Let m be the smallest positive integer s...

Let m be the smallest positive integer such that the coefficient of `x^2` in the expansion of `(1+x)^2 + (1 +x)^3 + (1 + x)^4 +........+ (1+x)^49 + (1 + mx)^50` is `(3n + 1) .^51C_3` for some positive integer n. Then find the value of n.

Text Solution

Verified by Experts

Coefficient of `x^(2)` in expansion
`= 1+.^(3)C_(2)+.^(4)C_(2)+.^(5)C_(2) + "….." + .^(49)C_(2)+.^(50)C_(2).m^(2)`
[as `.^(n)C_(r)+.^(n)C_(r-1) = .^(n+1)C_(r)`]
`= (.^(3)C_(5)+.^(3)C_(2)) + .^(4)C_(2) + .^(5)C_(2) + "…." + .^(49)C_(2) + .^(50)C_(2)m^(2)`
`= (.^(4)C_(3) + .^(4)C_(2)) + "....." + .^(50)C_(2)m^(2)`
`= .^(5)C_(3) + .^(50)C_(2)m^(2) + .^(50)C_(2)m^(2)`
`= .^(50)C_(3) + .^(50)C_(2)m^(2)+.^(50)C_(2)-.^(50)C_(2)`
`= .^(51)C_(3)+.^(50)C_(2)(m^(2)-1)`
`= (3n+1).^(51)C_(3)` (given)
`:. 3n.(51)/(3).^(50)C_(2) = .^(50)C_(2)(m^(2) - 1)`
`(m^(2)-1)/(51) = n`
Value of n is 5.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Numerical|25 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Coefficient of x^n in the expansion of (1+x)^(2n) is

The coefficient of x^n in the expansion of (1+x)(1-x)^n is

Let , m be the the smallest positive interger such that the coefficient of x^(2) in the expansion of (1+x)^(2)+(1+x)^(3)+....+(1+x)^(49)+(1+mx)^(50) " is " (3n+1)^(51)C_(3) for some positive integer n . Then the value of n is ,

Determine the coefficient of x^4 in the expansion of (1+x+x^2+x^3)^n .

If n is a positive integer then the coefficient of x ^(-1) in the expansion of (1+x) ^(n) (1+ (1)/(x)) ^(n) is-

Find a positive value of m for which the coefficient of x^2 in the expansion (1+x)^m is 6.

Find the sum of the coefficients in the expansion of (1+2x+3x^2+ n x^n)^2dot

If |x|<1, then find the coefficient of x^n in the expansion of (1+x+x^2+......)^2dot

If |x|<1, then find the coefficient of x^n in the expansion of (1+2x+3x^2+4x^3+)^(1//2)dot

The coefficient of x^(1274) in the expansion of (x+1)(x-2)^(2)(x+3)^(3)(x-4)^(4)…(x+49)^(49)(x-50)^(50) is