Home
Class 12
MATHS
Let X=(\ ^(10)C1)^2+2(\ ^(10)C2)^2+3(\ ^...

Let `X=(\ ^(10)C_1)^2+2(\ ^(10)C_2)^2+3(\ ^(10)C_3)^2+\ ddot\ +10(\ ^(10)C_(10))^2` , where `\ ^(10)C_r` , `r in {1,\ 2,\ ddot,\ 10}` denote binomial coefficients. Then, the value of `1/(1430)\ X` is _________.

Text Solution

Verified by Experts

The correct Answer is:
D

`X = underset(r=1)overset(10)sumr.(.^(10)C_(r))^(2)= underset(r=1)overset(10)sumr..^(10)C_(r)..^(10)C_(r)`
`= 10. underset(r=1)overset(10)sum .^(9)C_(r-1)..^(10)C_(10-r) = 10..^(19)C_(9)`
Now, `(X)/(1430) = (10..^(19)C_(9))/(1430) = (.^(19)C_(9))/(143) = (.^(19)C_(9))/(11xx13)`
`= (19xx17xx16)/(8) = 19xx34 = 646`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Numerical|25 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of .^10 C_2

Prove that :^(10)C_1(x-1)^2-^(10)C_2(x-2)^2+^(10)C_3(x-3)^2 .....-^(10)C_(10)(x-10)^2=x^2

The coefficient of x^(-10) in the expansion of (x^2-1/x^3)^10 is

Find the sum .^(10)C_1+^(10)C_3+^(10)C_5+^(10)C_7+^(10)C_9

Find the coefficients of x^(16) in the expansion of x^(10)(x-2)^(10)

Find value of the series .^(10)C_1+^(10)C_2+...+^(10)C_9dot

The value of sum_(r=2)^(10) ""^(r)C_(2).""^(10)C_(r) is

"^(30)C_(0)*^(20)C_(10)+^(31)C_(1)*^(19)C_(10)+^(32)C_(2)*18C_(10)+....^(40)C_(10)*^(10)C_(10) is equal to

Find the value of .^(20)C_(0) - .^(20)C_(1)+ .^(20)C_(2) - .^(20)C_(3) +"……"-"....." + .^(20)C_(10) . is

If (10)^9 + 2(11)^1 (10)^8 + 3(11)^2 (10)^7+..+10(11)^9 = k(10)^9 then k is equal to :