Home
Class 12
MATHS
Let f(x^m y^n)=mf(x)+nf(y) for all x , y...

Let `f(x^m y^n)=mf(x)+nf(y)` for all `x , y in R^+` and for all `m ,n in Rdot` If `f^(prime)(x)` exists and has the value `e/x ,` then find `lim_(x->0)(f(1+x))/x`

Text Solution

Verified by Experts

The correct Answer is:
e

For any `x in R^(+),` we have
`therefore" "f(1)=f(1)+f(1)" [Putting x = y = m= n =1]"`
`"or "f(1)=0`
`"or "underset(xrarr0)lim(f(1+x))/(x)=underset(xrarr0)lim(f'(1+x))/(1)" (using L' Hopital's rule)"`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|29 Videos
  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

A function f: R->R satisfies the equation f(x+y)=f(x)f(y) for all x , y in R and f(x)!=0 for all x in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=sinalpha, the prove that f(x)>0AAx in Rdot

Let f(x+y)=f(x)+f(y)+2x y-1 for all real x and y and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, the prove that f(x)>0AAx in Rdot

If f : R to R satisfies f(x + y)=f(x)+f(y) for all x, y in R and f(1)=7 , then sum_(r=1)^n f(r)

If f(x+y) = f(x) * f(y) for all real x and y and f(5)=2,f'(0) = 3 , find f'(5).

If f(x+y)=f(x)+f(y) for all real x and y, show that f(x)=xf(1) .

If f((x+y)/3)=(2+f(x)+f(y))/3 for all x,y f'(2)=2 then find f(x)

If f(x+y)=f(x). f(y) for all x and y and f(5)=2, f'(0)=4, then f '(5) will be

Let f(x+1/y) +f(x-1/y) =2f(x) f(1/y) AA x, y in R , y!=0 and f(0)=0 then the value of f(1) +f(2)=