Home
Class 12
MATHS
(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2...

`(d^2x)/(dy^2)` equals: (1) `((d^2y)/(dx^2))^(-1)` (2) `-((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3)` (3) `((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-2)` (4) `-((d^2y)/(dx^2))((dy)/(dx))^(-3)`

A

`-((d^(2)y)/(dx^(2)))((dy)/(dx))^(-3)`

B

`((d^(2)y)/(dx^(2)))^(-1)`

C

`-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3)`

D

`((d^(2)y)/(dx^(2)))((dy)/(dx))^(-2)`

Text Solution

Verified by Experts

We have
`(d^(2)x)/(dy^(2))=(d)/(dy)=((dx)/(dy))=(d)/(dy)(((1)/(dy))/(dx))cdot(dx)/(dy)`
`=-(1)/(((dy)/(dx))^(2))cdot(d^(2)y)/(dx^(2))cdot(1)/(((dy)/(dx)))`
`=-(1)/(((dy)/(dx))^(3))cdot(d^(2)y)/(dx^(2))`
`=-((dy)/(dx))^(-3)((d^(2)y)/(dx^(2)))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Numerical Value Type|45 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Solve (d^2y)/(dx^2)=((dy)/(dx))^2

(y-x(dy)/(dx))=a(y^(2)+(dy)/(dx))

(dy)/(dx)=(2x-3y)/(3x-2y)

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

If R=([1+((dy)/(dx))^2]^(3//2))/((d^2y)/(dx2)) , then R^(2//3) can be put in the form of a. 1/(((d^2y)/(dx^2))^(2//3))+1/(((d^2x)/(dy^2))^(2//3)) b. 1/(((d^2y)/(dx^2))^(2//3))-1/(((d^2x)/(dy^2))^(2//3)) c. 2/(((d^2y)/(dx^2))^(2//3))+2/(((d^2x)/(dy^2))^(2//3)) d. 1/(((d^2y)/(dx^2))^(2//3))1/(((d^2x)/(dy^2))^(2//3))

The second derivative of a single valued function parametrically represented by x=varphi(t)a n dy=psi(t) (where varphi(t)a n dpsi(t) are different function and varphi^(prime)(t)!=0 ) is given by (d^2y)/(dx^2)=(((dx)/(dt))((d^2y)/(dt^2))-((d^2x)/(dt^2))((dy)/(dt))/(((dx)/(dt))^2) (d^2y)/(dx^2)=(((dx)/(dt))((d^2y)/(dt^2))-((d^2x)/(dt^2))((dy)/(dt))/(((dx)/(dt))^3) (d^2y)/(dx^2)=(((d^2x)/(dt))((d^y)/(dt^2))-((d^x)/(dt^))((d^2y)/(dt^2))/(((dx)/(dt))^3) (d^2y)/(dx^2)=(((d^2x)/(dt^2))((d^y)/(dt^))-((d^2x)/(dt^2))((d^y)/(dt^))/(((dx)/(dt))^3)

(dy)/(dx)=(y^(2)-y+1)/(x^(2)-x+1)

(dy)/(dx)=(2x+3y)/(3x+2y)

If e^y(x+1)=1 , prove that (d^2y)/(dx^2)=((dy)/(dx))^2

If (a+bx)e^((y)/(x))=x , show that, x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2) .