Home
Class 12
MATHS
If for x (0,1/4), the derivative of tan^...

If for `x (0,1/4),` the derivative of `tan^(-1)((6xsqrt(x))/(1-9x^3))` is `sqrt(x)dotg(x),` then `g(x)` equals:

A

`(3)/(1+9x^(3))`

B

`(9)/(1+9x^(3))`

C

`(3xsqrt(x))/(1-9x^(3))`

D

`(3x)/(1-9x^(3))`

Text Solution

Verified by Experts

We have
`y=tan^(-1)((6xsqrt(x))/(1-9x^(3)))`
`=tan^(-1)((2cdot(3x^(3//2)))/(1-(3x^(3//2))^(2)))=2 tan ^(-1)(3x^(3//2))`
`therefore" "(dy)/(dx)=2xx(1)/(1+9x^(3))xx3xx(3)/(2)xxx^(1//2)=(9sqrt(x))/(1+9x^(3))`
`therefore" "g(x)=(9)/(1+9x^(3))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Numerical Value Type|45 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos
  • DOT PRODUCT

    CENGAGE PUBLICATION|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the derivatives of y="tan"^(-1) sqrt((1-x)/(1+x))

Find the derivatives of "tan"^(-1) sqrt((1+cos2x)/(1-cos2x))

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

The value of sin^(-1)[xsqrt(1-x)+sqrt(x)sqrt(1-x^2)] is equal to

Find the derivative of tan^(-1)((sqrt(1+x^2)-1)/(x)) with repect to tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) at x=0.

Find the derivation of sin^-1 (x^2 sqrt(1-x) - sqrtx sqrt(1-x^4)) with respect to x.

The value of int_(0)^(1)sin[2tan^(-1)sqrt((1+x)/(1-x))]dx is equal to -

int(dx)/((1+x^(2))sqrt(tan^(-1)x+4))

int_(0)^(1) sqrt((1-x)/(1+x))dx is equal to -

Find the derivatives of the following functions : (sqrt(x)+1)/(sqrt(x)-1)