Home
Class 12
MATHS
if vecr.veci=vecr.vecj=vecr.veck and|vec...

if `vecr.veci=vecr.vecj=vecr.veck and|vecr|= 6, "then find vector" vecr`.

Text Solution

Verified by Experts

let `vecr= x hati+ yhatj+ zhatk`. Since `vecr.hati= vecr.Hatj = vecr.hatk`
x=y=z
Also `|vecr|= sqrt(x^(2)+y^(2)+z^(2))=3`
`x= sqrt3`
Hence, the required vector, `vecr= +-sqrt3(hati+hatj+hatk)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

if vecr.veci=vecr.vecj=vecr.veck and|vecr|= 9, "then find vector" vecr .

If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and veca,vecb,vecc are non coplanar, then the area of the triangle whose vertices are A(veca),B(vecb) and C(vecc) is

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca, vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecb and vecr.veca =0 then find the value of vecr .vecb .

If veca, vecb, vecc are three given non-coplanar vectors and any arbitrary vector vecr in space, where Delta_(1)=|{:(vecr.veca,vecb.veca,vecc.veca),(vecr.vecb,vecb.vecb,vecc.vecb),(vecr.vecc,vecb.vecc,vecc.vecc):}|,Delta_(2)=|{:(veca.veca,vecr.veca,vecc.veca),(veca.vecb,vecr.vecb,vecc.vecb),(veca.vecc,vecr.vecc ,vecc.vecc):}| Delta_(3)=|{:(veca.veca,vecb.veca,vecr.veca),(veca.vecb,vecb.vecb,vecr.vecb),(veca.vecc,vecb.vecc,vecr.vecc):}|, Delta=|{:(veca.veca,vecb.veca,vecc.veca),(veca.vecb,vecb.vecb,vecc.vecb),(veca.vecc,vecb.vecc,vecc.vecc):}|, "then prove that " vecr=(Delta_(1))/Deltaveca+(Delta_(2))/Deltavecb+(Delta_(3))/Deltavecc

Let vecr, veca, vecb and vecc be four non-zero vectors such that vecr.veca=0, |vecrxxvecb|=|vecr||vecb|,|vecrxxvecc|=|vecr||vecc| then [(veca, vecb, vecc)]=

If vecP+vecQ=vecR and |vecP|=|vecQ|=sqrt(3) and |vecR|=3 , then the angle between vecP and vecQ is

If veca = 2veci+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

If veca, vecb and vecc be three non-coplanar vectors and a',b' and c' constitute the reciprocal system of vectors, then prove that i. vecr=(vecr.veca')veca+(vecr.vecb')vecb+(vecr.vecc')vecc ii. vecr= (vecr.veca)veca'+(vecr.vecb)vecb' + (vecr.vecc) vecc'