Home
Class 12
MATHS
If veca,vecbandvecc are unit vectors suc...

If `veca,vecbandvecc` are unit vectors such that `veca+vecb+vecc=0`, then the value of `veca.vecb+vecb.vecc+vecc.veca` is

Text Solution

Verified by Experts

squaring `(veca+vecb+vecc)= vec0` we get
`|veca|^(2)+|vecb|^(2)=|vecc|^(2)+2 veca.vecb+ 2vecb.vecc + 2vecc.veca=0`
`2(veca.vecb+vecb.vecc+vecc.veca)=-3`n
`veca.vecb+vecb.vecc+vecc.veca= -3/2`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=3 , then the value of veca.vecb+vecb.vecc+vecc.veca is

Let veca, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

If veca, vecb, vecc and vecd are unit vectors such that (vecaxx vecb).(veccxxvecd)=1 and veca.vecc=1/2 then

If veca, vecb, vecc and vecd are distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecb-vecc)ne 0

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

veca, vecb and vecc are unit vecrtors such that |veca + vecb+ 3vecc|=4 Angle between veca and vecb is theta_(1) , between vecb and vecc is theta_(2) and between veca and vecc varies [pi//6, 2pi//3] . Then the maximum value of cos theta_(1)+3cos theta_(2) is

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If vectors veca, vecb and vecc are coplanar, show that |{:(veca, vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc):}|=vec0

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is