Home
Class 12
MATHS
If vec a , vec b , and vec c are mutual...

If ` vec a , vec b , and vec c` are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors ` vec a and vec a+ vec b+ vec c dot`

Text Solution

Verified by Experts

since `veca,vecb and vecc` are mutually perpendicular , `veca.vecb=vecb.vecc=vecc.veca=0`
Angle between `veca and veca+vecb+vecc` is
`cos theta=(veca.(veca+vecb+vecc))/(|veca||veca+vecb=vecc|)`
`now |veca|=|vecb|=|vecc|=a`
`|veca+vecb=vecc|^(2)= |veca|^(2)|vecb|^(2)+|vecc|^(2)+2veca.vecb+2vecb.vecc+vecc.veca`
`=a^(2)=a^(2)+a^(2)+0+0+0`
`3a^(2)`
`|veca+vecb+vecc|=sqrt3a`
Putting this value in (i) , we get `theta = cos^(-1) 1/sqrt3`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If vec(a) , vec (b) and vec (c ) are three mutually perpendicular vectors of equal magnitude , show that , vectors vec (a) , vec (b) , vec (c ) make an equal angle with vec(a) + vec (b) + vec (c )

If vec a , vec b , vec c are mutually perpendicular unit vectors, find |2 vec a+ vec b+ vec c|dot

If the vectors 3 vec p+ vec q ;5p-3 vec qa n d2 vec p+ vec q ;4 vec p-2 vec q are pairs of mutually perpendicular vectors, then find the angle between vectors vec pa n d vec qdot

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

vec a , vec b , and vec c are three vectors of equal magnitude. The angle between each pair of vectors is pi//3 such that | vec a+ vec b+ vec c|=sqrt6. Then | vec a| is equal to a. 2 b. -1 c. 1 d. sqrt(6)//3

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c . Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] ; then vec d equally inclined to vec a , vec b and vec c . (a) statement 1 is true but statement 2 is false. (b) statement 2 is true but statement 1 is false. (c)both the statements are true. (d) both the statements are false.

vec a , vecb , vec c are three mutually perpendicular unit vectors then |vec a + vec b + vec c| is equal to

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of | vec a+ vec b+ vec c |

Two vectors vec(a) and vec (b) are such that |vec(a).vec(b)| = |vec(a) xx vec(b)| , then find the angle between the vectors vec(a) and vec(b) .

If three unit vectors vec a , vec b , and vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec a and vec bdot