Home
Class 12
MATHS
If | vec a|+| vec b|=| vec c| and vec a+...

If `| vec a|+| vec b|=| vec c| and vec a+ vec b= vec c ,` then find the angle between ` vec a and vec bdot`

Text Solution

Verified by Experts

`veca=vecb=vecc`
or `|veca|^(2)+|vecb|^(2)+2veca.vecb= |vecc|^(2)`
`veca.vecb=|veca||vecb|`
`costheta=1or cos=0^(@)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If three unit vectors vec a , vec b , and vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec a and vec bdot

If vec a and vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a and vec b .

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec a dot vec x=1, vec b dot vec x=3/2,| vec x|=2. Then find the angle between vec c and vec x

If vec a,vec b are two vectors such that vec a.vec b <0 and |vec a.vec b| = |vec axxvec b| then the angle between vec a and vec b is

If | vec a|=2| vec b|=5 and | vec axx vec b|=8, then find the value of vec a . vec bdot

If vec a,vec b, vec c be three vectors such that vec a+vec b+vec c=0 , |veca|=3 , |vecb|=5 and |vecc|=7 find the angle between the vectors veca and vec b .

If vec a and vec b are unequal unit vectors such that ( vec a- vec b)xx[( vec b+ vec a)xx(2 vec a+ vec b)]= vec a+ vec b , then angle theta between vec aa n d vec b is 0 b. pi//2 c. pi//4 d. pi

If |vec(a)|= 3 , |vec(b)| = 4 and | vec (a) xx vec(b)|= 6 , then find the angle between the vectors vec(a) and vec(b)

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=sqrt3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

If vec a , vec b , vec c are unit vectors such that vec a. vec b=0= vec a. vec c and the angle between vec b and vec c is pi/3, then find the value of | vec axx vec b- vec axx vec c| .