Home
Class 12
MATHS
If veca.veci=veca.(hati+hatj)=veca.(hati...

If `veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk)` . Then find the unit vector `veca`.

Text Solution

Verified by Experts

Let `veca=xhati+yhatj+zhatk`
then `veca.hati=(xhati+yhatj+zhatk).hati=x and veca. (hati+hatj)=x+y`
`and veca.(hati+hatj=hatk)=x+y+z("given that" x=x+y=x+y+z)`
now, `x=x+y Rightarrow y =0 and x+y =x+y+z Rightarrow z=0`
Hence, x =1 ( sicne `veca` is a unit vector)
`veca=veci`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

vecA= hati & vecB= hatj+hatk , then find out vecA.vecB ?

For given vectors veca=2hati-hatj+2hatkandvecb=-hati+hatj-hatk , find the unit vector in the direction of the vector veca+vecb .

If vecA=hati+4hatj+hatk and vecB=3hati-5hatj+hatk , find the unit vector along any vector parallel to the resultant of vecA and vecB .

If vecA=5hati+3hatj-4hatk and vecB=5hati+2hatj+4hatk are two vectors, find the unit vectors along (vecA+vecB) and (vecA-vecB) .

If veca=hati+hatj+hatk,vecb=2hatj-hatj+3hatkandvecc=hati-2hatj+hatk , find a unit vector parallel to the vector 2veca-vecb+3vecc .

If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt5and vecb= (2hati + hatj + 3hatk)/sqrt14 then find the value of (2veca + vecb) . [(vecaxxvecb) xx (veca- 2vecb)]

If veca=2hati-5hatj+4hatk and vecb=hati-4hatj+6hatk , then a unit vector in the direction of the vector 2veca-vecb is -

If veca = hati + hatj + hatk , vecb = hatj - hatk then find a vector vecc , such that veca xx vecc = vecb and veca .vecc = 3 .

If veca=-hati+hatj+hatk andvecb=2hati+0hatj+hatk then find vector vecc satisfying the following conditions, (i) that it is coplaner with veca and vecb , (ii) that it is bot "to" vecb and (iii) that veca.vecc=7 .