Home
Class 12
MATHS
If veca,vecb,vecc are mutually perpendic...

If `veca,vecb,vecc` are mutually perpendicular vectors of equal magnitude show that `veca+vecb+vecc` is equally inclined to `veca, vecb and vecc`

Text Solution

Verified by Experts

Since `veca,vecb and vecc` are mutually perpendicular vectrors, we have `veca.vecb=vecb.vecc=vecc.veca=0`
it is given that
`|veca|=|vecb|=|vecc|`
Let vector `veca+vecb+vecc` be inclined to `veca,vecb and vecc` at angle `theta_(1),theta_(2)and theta_(3)` respectively. then , we have
`costheta_(1)=((veca+vecb+vecc).veca)/(|veca+vecb+vecc||veca|)=(veca.veca+vecb.veca+vecc.veca)/(|veca+vecb+vecc||veca|)`
`(|veca|^(2))/(|veca+vecb+vecc||veca|)[vecb.veca.vecc.veca=0]`
`=(|veca|)/(|veca+vecb+vecc|)`
`costheta_(2)=((veca+vecb+vecc).vecb)/(|veca+vecb+vecc||vecb|)=(veca.veca+vecb.veca+vecc.vecb)/(|veca+vecb+vecc|.|vecb|)`
`=(|vecb|^(2))/(|veca+vecb+vecc|.|vecb|)[veca.vecb=vecc.vecc.vecb=0]`
`(|vecb|)/(|veca+vecb+vecc|)`
`costheta_(3)=((veca+vecb+vecc).vecc)/(|veca+vecb+vecc||vecc|)=(veca.vecc+vecb.vecc+vecc.vecc)/(|veca+vecb+vecc|.|vecc|)`
`(|vecc|^(2))/(|veca+vecb+vecc|.|vecc|)[veca.vecc=vecb.vecc=0]`
`= (|vecc|)/(|veca+vecb+vecc|)`
now as `|veca|=|vecb|=|vecc|, costheta_(1)=costheta_(2)=costheta_(3)`
`theta_(1)=theta_(2)=theta_(3)`
Hence, the vector `(veca+vecb+vecc)` is equally inclined to `veca,vecb and vecc`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are three mutually perpendicular vectors of equal magnitude, show that vec a + vecb + vecc is equally inclined to veca, vecb and vecc . Also find the angle.

If veca,vecb and vecc are three mutually perpendicular unit vectors and vecd is a unit vector which makes equal angle with veca,vecb and vecc , then find the value of |veca+vecb+vecc+vecd|^(2) .

If veca , vecb , vecc are three mutually perpendicular unit vectors, then prove that ∣ ​ veca + vecb + vecc | ​ = sqrt3 ​

Let veca ,vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=2, |vecb|=3, |vecc| = 6 , the find the length of veca +vecb + vecc .

Let veca , vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=3, |vecb|=4, |vecc| = 5 , the find the length of veca +vecb + vecc .

if veca, vecb and vecc are there mutually perpendicular unit vectors and veca ia a unit vector then find the value of |2veca+ vecb + vecc |^2

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca,vecb ,vecc are any three non- coplanar vectors then the equation [vecbxxvecc veccxxveca vecaxxvecb]x^(2) + [veca+vecb vecb+vecc vecc+veca] x+1 +[vecb-vecc vecc -veca veca -vecb] =0 has roots (A) real and distinct (B) real (C) equal (D) imaginary

i. If vec a , vec b and vec c are non-coplanar vectors, prove that vectors 3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc are coplanar.