Home
Class 12
MATHS
In isosceles triangles A B C ,| vec A B|...

In isosceles triangles `A B C ,| vec A B|=| vec B C|=8,` a point `E` divides `A B` internally in the ratio 1:3, then find the angle between ` vec C Ea n d vec C A(w h e r e| vec C A|=12)dot`

Text Solution

Verified by Experts

`|vecc|=12and |vecb|=|vecb-vecc|=8`
`b^2=b^(2)+c^(2)-vecb.bvecc`
`vecb.vecc=72`
`costheta(vecc.(vecc-((vecb)/(4))))/(|vecc||vecc-vecb/4|)=(vecc.vecc-(vecc.vecb)/4)/(12|vecc-vecb/4|)=(144-18)/(12|vecc-vecb/4|)`
`|vecc-vecb/4|^(-2)=|vecc|^(2)+|vecb|^(2)/16-(vecb.vecc)/2=144+4-36=112`
`cos theta=21/(2xxsqrt112)=21/(2xx4sqrt7)=(3sqrt7)/8`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

If vec a , vec b , and vec c are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors vec a and vec a+ vec b+ vec c dot

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

If vec(a) + vec (b)+vec(c ) = vec (0) and |vec(a)| = 3 , |vec(b)| = 5 and |vec(c)| = 7 , , find the angle between the vectors vec(a) and vec(b)

Given vec(C )= vec(A) xx vec(B) and vec(D) = vec(B) xx vec(A) . What is the angle between vec(C ) and vec(D) ?

If vec b is not perpendicular to vec c , then find the vector vec r satisfying the equation vec rxx vec b= vec axx vec b and vec r. vec c=0.

If vec (a) + vec(b) + vec (c ) = vec(0) and |vec(a)| = 6 , |vec (b)| = 4 and |vec(c )| = 3 find the cosine of the angle between the vectors vec(b) and vec(c )

If vec a , vec b , vec c are unit vectors such that vec a. vec b=0= vec a. vec c and the angle between vec b and vec c is pi/3, then find the value of | vec axx vec b- vec axx vec c| .

If vec a , vec b , and vec c be non-zero vectors such that no two are collinear or ( vec axx vec b)xx vec c=1/3| vec b|| vec c| vec adot If theta is the acute angle between vectors vec b and vecc , then find the value of sin thetadot

If vec a,vec b, vec c be three vectors such that vec a+vec b+vec c=0 , |veca|=3 , |vecb|=5 and |vecc|=7 find the angle between the vectors veca and vec b .