Home
Class 12
MATHS
Prove that (veca-vecb)xx(veca+vecb)=2(ve...

Prove that `(veca-vecb)xx(veca+vecb)=2(vecaxxvecb)`.

Text Solution

Verified by Experts

`(veca-vecb)xx(veca+vecb)=(veca-vecb) xxveca+(veca-vecb)xxvecb` [ By distributivity of vector product over addition]
`= vecaxxveca-vecbexxveca+vecaxxvecb-vecbxxvecb` [ Again , by distributivity of vector product over addition ]
`=vec0 +vecaxxvecb+vecaxxvecb-vec0`
`= 2vecaxxvecb`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Show that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb)

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc) = -2[vecb vecc vecd] veca

Prove that (veca+vecb)*(veca+vecb)=|veca|^(2)+|vecb|^(2) , if and only if veca,vecb are perpendicular , given vecanevec0,vecbnevec0 . Choose the correct answer in Exercises 16 to 19.

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. vecb =0 then prove that (vecbxx(veca xx vecb))/(vecb.vecb)=vecq

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

Let veca,vecb and vecc be a set of non- coplanar vectors and veca'vecb' and vecc' be its reciprocal set. prove that veca=(vecb'xxvecc')/([veca'vecb'vecc']),vecb=(vecc'xxveca')/([veca'vecb'vecc'])andvecc=(veca'xxvecb')/([veca'vecb'vecc'])

If veca,vecb,vecc and vecd are the position vectors of the vertices of a cycle quadrilateral ABCD, prove that (|vecaxxvecb+vecb xxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))+(|vecbxxvecc+veccxxvecd+vecd xx vecb|)/((vecb-vecc).(vecd-vecc)) =0