Home
Class 12
MATHS
Let vec a= hat i+4 hat j+2 hat k , vec ...

Let ` vec a= hat i+4 hat j+2 hat k , vec b=3 hat i-2 hat j+7 hat ka n d vec c=2 hat i- hat j+4 hat kdot` Find a vector ` vec d` which is perpendicular to both ` vec a` and `vec b` and `vec c. vec d=15.`

Text Solution

Verified by Experts

Vector `vecd` is perpendicular to vectors `veca=hati+4hatj+2hatk,hatn=3hati-2hati-2hatj+7hatk`
`vecd=lambda|{:(hati,hatj,hatk),(1,4,2),(3,-2,7):}|=lambda(32hati-hatj-14hatk)`
`Also" " vecc.vecd=15`
`lambda(2hati-hatj+4hatk).(32hati-hatj-14hatk)15`
` or 9 lambda =15`
`or lambda = 5/3`
Hence, the required vector `vecd=1/3(160hati-5hatj-70hatk)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

answer any one question : (ii) let vec a= hat i+4 hat j+ 2hat k , vec b=3 hat i- 2 hat j +7 hat k and vec c= 2 hat i- hat j + 4 hat k . Find a vector vec d which is perpendicular to both the vectors vec a and vec b and vec c . vec d=18

Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i+ hat j- hat kdot Then find [vec a vec b vec c]

Let vec ( a) = hat (i) + 4 hat (j) + 2 hat (k), vec (b) = 3 hat(i) - 2 hat (j) - 7 hat (k) and vec (c ) = 2 hat (i) - hat (j) + 4 hat (k) . Find a vector vec (d) which is perpendicular to both vec (a) and vec (b) and vec ( c) . vec(d) = 18

If vec a=x hat i+y hat j+z hat k , vec b=y hat i+z hat j+x hat k and vec c=z hat i+x hat j+y hat k , then vec axx( vec bxx vec c) is

if vec a= 5 hat i -hat j -3 hat k and vec b=hat i+3 hat j - 5 hat k , Find vec a . vec b =?

If vec a= 2 hat i- hat j+ hat k and vec b = - hat i+3 hat j+4 hat k ,then veca.vecb =

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat kdot

If vec a=3 hat i- hat j-4 hat k , vec b=2 hat i+4 hat j-3 hat k and vec c= hat i+2 hat j- hat k , find |3 vec a-2 hat b+4 hat c|dot

If vec(a) = 3 hat (i) + 4 hat (j) - hat(k) , vec(b) = hat(i) - 3 hat (j) + 4 hat (k) and vec (c ) = 5 hat (i) - 6 hat (j) + 4 hat (k) , find the vector vec (r ) which is perpendicular to both vec(a) and vec(b) and which satisfies the relation vec(r).vec(c ) = 91

If vec a= hat i+hat j- hat k, vec b= -hat i+2 hat j+ hat k and vec c = - hat i+2 hat j- hatk , then show that the unit vector perpendicular to vec a+ vec b and vec b+ vec c is hat k .