Home
Class 12
MATHS
If A ,Ba n dC are the vetices of a tr...

If `A ,Ba n dC` are the vetices of a triangle `A B C ,` then prove sine rule `a/(sinA)=b/(sinB)=c/(sinC)dot`

Text Solution

Verified by Experts

Let `vec(BC)=veca,vec(CA)=vecb,vec(AB),vec c," so that" veca + vecb=-vecc`. Therefore,
`vecaxxveca+vecaxxvecb=-vecaxxvecc`
`vec0+vecaxxvecb=veccxxveca`
`|vecaxxvecb|=|veccxxveca|`
` ab sin(180^(@)-c)=casin (180^(@)-B)`
`ab sin C =sa sin B`
Dividing both sides by abc, we get
`sinC/c=sinB/b`
`b/sinB=c/sinC`
similarly , `c/sinC= a/sinA`
From (i) and (ii) ,we have
`a/sinA=b/sinB=c/sinC`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Using vector method in a triangle , prove that, (i) a/(sinA)=b/(sinB)=c/(sinC) and

If A,B,C be the angles ofa triangle then prove that (sin A + sin B)(sin B + sin C)(sinC + sinA) gt sin A sin B sinC .

If A,B,C are the angles of a triangle, the system of equations (sinA)x+y+z=cosA , x+(sinB)y+z=cosB , x+y+(sinC)z=1-cosC has

If sinthetaa n d-costheta are the roots of the equation a x^2-b x-c=0 , where a , ba n dc are the sides of a triangle ABC, then cosB is equal to 1-c/(2a) (b) 1-c/a 1+c/(c a) (d) 1+c/(3a)

If in a triangle A B C ,/_C=60^0, then prove that 1/(a+c)+1/(b+c)=3/(a+b+c) .

If A,B,C are the angles of a triangle, find the maximum values of : sin A+ sinB+ sin C

If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

In a triangle A B C prove that a/(a+c)+b/(c+a)+c/(a+b)<2

If in a triangle ABC, sinA, sinB,sinC are in A.P., then

In any triangle ABC show that sinA+sinB gt sin C