Home
Class 12
MATHS
Using cross product of vectors , prove t...

Using cross product of vectors , prove that `sin (A+B)=sin A cosB + cosA sin B` .

Text Solution

Verified by Experts

Let OP and OQ be unit vectors making angles A and B with the X-axis such that
`anglePOQ = A +B`
`vec(OP)= hat i cos A + hat j sin A`
`vecOQ=haticosB-hatj sin B`
`now, vecOPxxvecOQ`
`= (1) (1) sin (A+B) (-hatk)`
`= - sin ( A+B) hatk`
`also vec(O)PxxvecOQ= |{:(hati,hatj , hatk),(cosA ,sinA,0),(cosB,-sinB,0):}|`
`(-cos A sinB-sinA cosB)hatk`
`=-(sinA cos B + cosA sinB) hatk`
form (i) and (ii), we get
`sin ( A+B) = sin A cos B + cos A sin B`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

sin (A+B) sin (A-B)=

Using the fact the that sin (A+B)= sin A cos B+ cos A sin B and the differentiation, obtain the sum formula for cosines.

Prove that (sinA+sin3A)/(cosA+cos3A)=tan2A .

If A=B=45^(@) , then justify sin(A+B)=sinA cosB+cosA sinB.

Prove that (sin A-sin B)/(cos A+ cos B) = "tan" (A-B)/2

Using vectors , prove that in a triangle ABC a/(sin A) = b/(sin B) = c/(sin C) where a,b,c are lengths of the ideas opposite to the angles A,B,C of triangle ABC respectively .

Prove that (sin3A+sinA)sinA+(cos3A-cosA)cosA=0

Prove that (sin(A+B)+sin(A-B))/(cos(A+B)+cos(A-B))=tanA

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

In /_\ABC ,Prove that a cos A + b cos B + c cos C = 2a sin B sin C