Home
Class 12
MATHS
If veca, vecb and vecc are the position ...

If `veca, vecb and vecc` are the position vectors of the vertices A,B and C. respectively , of `triangleABC`. Prove that the perpendicualar distance of the vertex A from the base BC of the triangle ABC is `(|vecaxxvecb+vecbxxvecc+veccxxveca|)/(|vecc-vecb|)`

Text Solution

Verified by Experts

`|vec(BC)xxvec(BA)|=|vecaxxvecb+vecb+vecbxxvecc+veccxxveca|`
`|vec(BC)||vec(BA)|sin B=|vecaxxvecbxxvecbxxvecc+veccxxveca|`
`|vecc-vecb| (ABsinB)=|vecaxxvecb+vecbxxvecc+veccxxveca|`
Therefore, the length of perpendicualr from A on BC is
`AL=ABsinB=(|vecaxxvecb+vecbxxvecc+veccxxveca|)/(|vecb-vecc|)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Prove that: [vecaxxvecb vecb xx vecc veccxxveca]=[vecavecbvecc]^2

veca,vecb and vecc are three orthogonal vectors with magnitudes 3, 4 and 12 respectively. The value of abs(veca+vecb+vecc) =

If veca , vecb , vecc are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is 1/2 ​ [ veca × vecb + vecb × vecc + vecc × veca ] . Also deduce the condition for collinearity of the points A, B and C.

The position vectors of the vertices A,B,C of the triangle ABC are (hati+hatj+hatk),(hati+5hatj-hatk) and (2hati+3hatj+5hatk) respectively. Find the greatest angle of the triangle.

Let vec(a),vec(b),vec (c ) be the positions vectors of the vertices of a triangle , prove that the area of the triangle is 1/2| vec(a) xx vec(b) + vec(b) xx vec(c)+ vec(c)xx vec(a)|

The coordinates of A, B and C are (3,4), (-4,3) and (8,-6) respectively , Find the area of the DeltaABC and also find the perpendicular distance of BC from the vertex A.

If veca,vecb,vecc and vecd are the position vectors of the vertices of a cycle quadrilateral ABCD, prove that (|vecaxxvecb+vecb xxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))+(|vecbxxvecc+veccxxvecd+vecd xx vecb|)/((vecb-vecc).(vecd-vecc)) =0

A(veca),B(vecb),C(vecc) are the vertices of the triangle ABC and R(vecr) is any point in the plane of triangle ABC , then vec r.(vecaxxvecb+vecbxxvecc+veccxxveca) is always equal to

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :