Home
Class 12
MATHS
Let vec a , vec ba n d vec c be three v...

Let ` vec a , vec ba n d vec c` be three verctors such that ` vec a!=0,| vec a|=| vec c|=1,| vec b|=4` and `| vec bxx vec c|=sqrt(15)dot` If ` vec b-2 vec c=lambda vec a ,` then find the value of `lambda`

Text Solution

Verified by Experts

Let the angle between `vecb and vecc be alpha`. Then
`|vecbxxvecc|=sqrt15`
`|vecb||vecc| sinalpha=sqrt15`
`sin alpha=sqrt15/4`
` cos alpha = 1/4`
`Rightarrowvecb-2vecc=lambdaveca`
`or|vecb-2vecc|^(2)=lambda^(2)|veca|^(2)`
`|vecb|^(2)+4||vecc|^(2)-4.vecb.vecc=lambda^(2)|veca|^(2)`
`or 16+ 4 -4 xx 4xx 1 xx 1/4=lambda^(2)`
`or lambda^(2)=16 or lambda = +-4`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b , and vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c| .

Let vec a , vec b and vec c be three non-zero vectors such that vec a+ vec b+ vec c=0 and lambda vec bxx vec a+ vec bxx vec c+ vec cxx vec a=0, then find the value of lambda

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Let vec r , vec a , vec ba n d vec c be four nonzero vectors such that vec rdot vec a=0,| vec rxx vec b|=| vec r|| vec b|a n d| vec rxx vec c|=| vec r|| vec c|dot Then [abc] is equal to |a||b||c| b. -|a||b||c| c. 0 d. none of these

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec a dot vec x=1, vec b dot vec x=3/2,| vec x|=2. Then find the angle between vec c and vec x

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of | vec a+ vec b+ vec c |

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

Let vec a , vec b , and vec c are vectors such that | vec a|=3,| vec b|=4 and | vec c|=5, and ( vec a+ vec b) is perpendicular to vec c ,( vec b+ vec c) is perpendicular to vec a and ( vec c+ vec a) is perpendicular to vec bdot Then find the value of | vec a+ vec b+ vec c| .

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.