Home
Class 12
MATHS
If vec axx vec b= vec cxx vec da n d ve...

If ` vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d ,` then show that ` vec a- vec d ,` is parallel to ` vec b- vec c`

Text Solution

Verified by Experts

`{:("we have ",vecaxxvecb=veccxxvecd),(and,vecaxxvecc=vecbxxvecd):}]`
`veca-vecd "will be parallel to" vecb-vecc`
`if (veca-vecd)xx(vecb-vecc)=vec0`
` if(veca-vecd)xx(vecb-vecc)=vec0`
`i.e. if vecaxxvecb-vecaxxvecc-vecd xxvecb+vecd xxvecc=vec0`
`if (vecaxxvecb+vecd xx vecc)-(vecaxxvecc+vecd xxvecb)=vec0`
`if (veca xx vecb-veccxxvecd)-(vecaxxvecc-vecb xxvecd)=vec0`
`if vec0-vec0=vec0`
`vec0=vec0` which is ture
Hence the result.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If vec axx vec b= vec cxxvec d and vec axxvec c= vec bxxvec d, vec a ne vec d, vec b ne vec c then show that vec b- vec c is parallel to vec a-vec d

If vec (a) xx vec(b) = vec (c ) xx vec(d) and vec (a) xx vec ( c) = vec (b) xx vec (d ) , show that vec(a) - vec (d) is parallel vec(b) - vec (c) , where to vec (a) != vec (d) and vec ( b) != vec (c )

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec p , vec q , vec r denote vector vec bxx vec c , vec cxx vec a , vec axx vec b , respectively, show that vec a is parallel to vec qxx vec r , vec b is parallel vec rxx vec p , vec c is parallel to vec pxx vec q .

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

Let the pairs a , b,and c ,d each determine a plane. Then the planes are parallel if a. ( vec axx vec c)xx( vec bxx vec d)= vec0 b. ( vec axx vec c).( vec bxx vec d)= vec0 c. ( vec axx vec b)xx( vec cxx vec d)= vec0 d. ( vec axx vec b).( vec cxx vec d)= vec0

[( vec axx vec b)xx( vec bxx vec c)( vec bxx vec c)xx( vec cxx vec a)( vec cxx vec a)xx( vec axx vec b)] is equal to (where vec a , vec ba n d vec c are nonzero non-coplanar vector) a. [ vec a vec b vec c]^2 b. [ vec a vec b vec c]^3 c. [ vec a vec b vec c]^4 d. [ vec a vec b vec c]

If ( vec axx vec b)xx( vec cxx vec d) . ( vec axx vec d)=0 , then which of the following may be true? (a) vec a , vec b , vec ca n d vec d are necessarily coplanar (b) vec a lies in the plane of vec ca n d vec d (c) vec b lies in the plane of vec aa n d vec d (d) vec c lies in the plane of vec aa n d vec d