Home
Class 12
MATHS
If vec a , vec b , vec ca n d vec d are...

If ` vec a , vec b , vec ca n d vec d` are the position vectors of the vertices of a cyclic quadrilateral `A B C D ,` prove that `(| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/((vec b- vec a).(vec d- vec a)) + (| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/((vec b- vec c).( vec d- vec c))=0dot`

Text Solution

Verified by Experts

`(|vecaxxvecb+vecb xxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))=(|(veca-vecd)xx(vecb-veca)|)/((vecb-veca).(vecd-veca))`
`= (|veca-vecd||vecb-veca|sinA)/(|vecb-veca||vecd-veca|cosA)`
`tanA`
`Also (|vecbxxvecc+veccxxvecd+vecd xxvecb|)/((vecb-vecc).(vecd-vecc))=(|(vecb-vecc)xx(vecc-vecd)|)/((vecb-veca).(vecd-vecc))`
`=(|vecb-vecc||vecc-vecd|sinC)/(|vecb-vecc|.|vecd-vecc|cosA)`
`tan C`
As it is a cycle quadrilateral, we have
`A = 180^(@)-C`
`tan A=tan(180^(@)-C)`
`tan A + tan C =0`
`(|vecaxx vecb+vecbxxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))+(|vecbxxvecc+veccxxvecd+vecd xxvecb|)/((vecb-vecc).(vecd-vecc))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= a. 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

( vec a+ vec b)dot( vec b+ vec c)xx( vec a+ vec b+ vec c)= a. [ vec a\ vec b\ vec c] b. 0 c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b ,a n d vec c are three non-coplanar vectors, then find the value of ( vec a .( vec bxx vec c))/( vec b .( vec cxx vec a))+( vec b .( vec cxx vec a))/( vec c .( vec axx vec b))+( vec c . ( vec bxx vec a))/( vec a . ( vec bxx vec c))

Prove that : vec(a) . { vec(b) xx (vec(c) + vec(d))} = vec(a) . (vec(b)xx vec(c)) + vec(a) . ( vec(b) xx vec(d))

If vec axx vec b= vec cxxvec d and vec axxvec c= vec bxxvec d, vec a ne vec d, vec b ne vec c then show that vec b- vec c is parallel to vec a-vec d

For any four vectors, vec a , vec b , vec c and vec d prove that vec d.( vec axx( vec bxx( vec cxx vec d)))=( vec b. vec d)[ vec a \ vec c \ vec d] .

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .

Let vec(a),vec(b),vec (c ) be the positions vectors of the vertices of a triangle , prove that the area of the triangle is 1/2| vec(a) xx vec(b) + vec(b) xx vec(c)+ vec(c)xx vec(a)|