Home
Class 12
MATHS
u and v are two non-collinear unit vec...

`u and v` are two non-collinear unit vectors such that `|hat uxx hat v|=|( hat u-hat v)/2|.` Find the value of`| hat uxx(hat uxx hat v)|^2`

Text Solution

Verified by Experts

Given that `|(hatu+hatv)/2+hatuxxhatv|=1`
` |(hatu+hatv)/2+hatuxxhatv|^(2)=1`
`(2+2costheta)/4+sin^(2)theta=1`
`cos^(2)(theta /2)=cos^(2)theta`
`theta=npi+-theta/2,n inZ`
`(2pi)/3`
`|hatuxxhatv|=sin((2pi)/3)=sin (pi/3)=|(hatu-hatv)/2|`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

hatu and hat v are two non-collinear unit vectors such that |(hatu+hatv)/2+hatuxxvecv|=1 . Prove that |hatuxxhatv|=|(hatu-hatv)/2|

Find the value of [ (hat (k)xx hat (j)).hat(i)+hat(j).hat (k)]

Let hat a , hat b ,and hat c be the non-coplanar unit vectors. The angle between hat b and hat c is alpha , between hat c and hat a is beta and between hat a and hat b is gamma . If A( hat a cosalpha, 0),B( hat bcosbeta, 0) and C( hat c cosgamma, 0), then show that in triangle AB C , (|hat axx(hat bxx hat c)|)/(sinA)=(|hat bxx(hat cxx hat a)|)/(sinB)=(|hat cxx(hat axx hat b)|)/(sinC)

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

If hat a , hat b ,a n d hat c are unit vectors, then | hat a-hat b|^2+| hat b- hat c|^2+| hat c- hat a|^2 does not exceed

Find the unit vector in the direction of the vector vec a= hat i+ hat j+ 2 hat k .

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Find out the angle between two-vectors hat i + hat j and hat i- hat k .

Let two non-collinear unit vector hat a a n d hat b form an acute angle. A point P moves so that at any time t , the position vector O P(w h e r eO is the origin ) is given by hat acost+ hat bsintdotW h e nP is farthest from origin O , let M be the length of O Pa n d hat u be the unit vector along O Pdot Then (a) hat u=( hat a+ hat b)/(| hat a+ hat b|)a n dM=(1+ hat adot hat b)^(1//2) (b) hat u=( hat a- hat b)/(| hat a- hat b|)a n dM=(1+ hat adot hat )^(1//2) (c) hat u=( hat a+ hat b)/(| hat a+ hat b|)a n dM=(1+2 hat adot hat b)^(1//2) (d) hat u=( hat a- hat b)/(| hat a- hat b|)a n dM=(1+2 hat adot hat b)^(1//2)

Find a unit vector perpendicular to both the vectors 2 hat (i) - 3 hat (j) + 6 hat (k) and 3 hat (j) - 4 hat (k) . Also find the sine of the angle between the given vectors .