Home
Class 12
MATHS
Let A ,B ,C be points with position ve...

Let `A ,B ,C` be points with position vectors `2 hat i- hat j+ hat k , hat i+2 hat j+3 hat ka n d3 hat i+ hat j+2 hat k` respectively. Find the shortest distance between point `B` and plane `O A Cdot`

Text Solution

Verified by Experts

Shortest distance between B and plane OAC is perpendicular distance of point B from the plane BM, M is foot of perpendicualar from B on plane OAC.
Now BM= projection vector `vec(AB)` on vector perpendicualar to the plane. Now vector perpendicular to the plane is `vec(OA)xx vec(OC) = veca xx vecc`. Therefore,
`BM=(vec(OB).(vecaxxvecc))/(|vecaxxvecc|)`
`=(vecb.(vecaxxvecc))/(|vecaxxvecc|)`
`vecaxxvecc=|{:(hati,hatj,hatk),(2,-1,1),(3,1,2):}|=-3hati-hatj+5hatk`
`vecb.(vecaxxvecc)=(hati+2hatj+3hatk).(-3hati-hatj+5hatk)=-3-2+15=10`
`|vecaxxvecc|=|-3hati-hatj+5hatk|=sqrt(9+1+25)=sqrt35`
`BM = 10/sqrt35=2sqrt(5/7)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

find the projection of 3hat i - hat j + 4hat k on 2 hat i + 3 hat j -6 hat k

Prove that point hat i +2 hat j - 3 hat k ,2 hat i - hat j + hat k and 2 hat i + 5 hat j - hat k from a triangle in space.

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Check whether the three vectors 2 hat i+2 hat j+3 hat k ,-3 hat i+3 hat j+2 hat ka n d3 hat i+4 hat k from a triangle or not

Find the projection of vector hat i+3 hat j+7 hat k on the vector 7 hat i- hat j+8 hat kdot

If points hat i+ hat j , hat i- hat j and p hat i+q hat j+r hat k are collinear, then

Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i+ hat j- hat kdot Then find [vec a vec b vec c]

Find | -> axx -> b|, if -> a=2 hat i+ hat j+3 hat k and -> b=3 hat i+5 hat j-2 hat k .

If vec a=3 hat i- hat j-4 hat k , vec b=2 hat i+4 hat j-3 hat k and vec c= hat i+2 hat j- hat k , find |3 vec a-2 hat b+4 hat c|dot

The dot products of a vector with the vectors hat (i) - 3 hat(k) , hat (i) - 2hat (k) and hat (i) + hat (j)+ 4 hat (j) are 0,5,8 respectively . Find the vector .