Home
Class 12
MATHS
If vec a , vec b ,a n d vec c are three...

If ` vec a , vec b ,a n d vec c` are three non-coplanar vectors, then find the value of `( vec a .( vec bxx vec c))/( vec b .( vec cxx vec a))+( vec b .( vec cxx vec a))/( vec c .( vec axx vec b))+( vec c . ( vec bxx vec a))/( vec a . ( vec bxx vec c))`

Text Solution

Verified by Experts

Since ` (veca vecb vecc] ne 0`, we have
`(veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))=([veca vecb vecc])/([vecb vecc veca])+([vecbveccveca])/([vecc veca vecb])+([vecc vecb veca])/([veca vecb vecc])`
`= ([vecavecb vecc])/([veca vecbvecc])+([vecavecbvecc])/([vecavecbvecc])-([vecavecbvecc])/([veca vecb vecc])`
= 1+ 1 -1=1
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b and vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c).[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= a. 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

( vec a+ vec b)dot( vec b+ vec c)xx( vec a+ vec b+ vec c)= a. [ vec a\ vec b\ vec c] b. 0 c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

If vec a , vec b and vec c are three non-zero, non coplanar vector vec b_1= vec b-( vec b . vec a)/(| vec a|^2) vec a , vec c_1= vec c-( vec c . vec a)/(| vec a|^2) vec a+( vec b . vec c)/(| vec c|^2) vec b_1 , , c_2= vec c-( vec c . vec a)/(| vec a|^2) vec a-( vec b . vec c)/(| vec b_1|^2) , b_1, vec c_3= vec c-( vec c . vec a)/(| vec c|^2) vec a+( vec b . vec c)/(| vec c|^2) vec b_1 , vec c_4= vec c-( vec c . vec a)/(| vec c|^2) vec a=( vec b . vec c)/(| vec b|^2) vec b_1 then the set of orthogonal vectors is a. ( vec a , vec b_1, vec c_3) b. ( vec a , vec b_1, vec c_2) c. ( vec a , vec b_1, vec c_1) d. ( vec a , vec b_2, vec c_2)

If vec a , vec b , and vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c| .

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .

Let vec a , vec b ,a n d vec c be vectors forming right-hand traid. Let vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c]),a n d vec r=( vec axx vec b)/([ vec a vec b vec c]),dot If x in R^+, then a. x[ vec a vec b vec c]+([ vec p vec q vec r])/x has least value =2 . b. x^4[ vec a vec b vec c]^2+([ vec p vec q vec r])/(x^2) has least value =(3/2)^(2//3) c. [ vec p vec q vec r]>0 d. none of these