Home
Class 12
MATHS
The position vectors of the four angu...

The position vectors of the four angular points of a tetrahedron are `A( hat j+2 hat k),B(3 hat i+ hat k), C(4 hat i+3 hat j+6 hat k)a n dD(2 hat i+3 hat j+2 hat k)dot` Find the volume of the tetrahedron `A B C Ddot`

Text Solution

Verified by Experts

Vertices of tetrahedron are `A(hatj+2hatk),B(3hati+hatk),C(4hati+3hatj+6hatk) and D(2hati+3hatj+2hatk)`.Threrfore,
`vec(AB)=3hati-hatj-hatk,vec(AC)=4hati+2hatj+4hatk and vec(AD)=2hati+2hatj`
volume, ` V=1/6[vec(AB)" " vec(AV)" "vec(AD)]`
`=1/6 |{:(3,-1,-1),(4,2,4),(2,2,0):}|`
2 cubic unit
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

find the projection of 3hat i - hat j + 4hat k on 2 hat i + 3 hat j -6 hat k

Prove that point hat i +2 hat j - 3 hat k ,2 hat i - hat j + hat k and 2 hat i + 5 hat j - hat k from a triangle in space.

In each of the following show that the given vectors are coplanar: 4 hat (i) + 2 hat (j) + hat (k) , 2 hat (i) - hat (j) + 3 hat (k) , 8 hat (i) + 7 hat (k)

Prove that the four points 6 hat i-7 hat j ,16 hat i-19 hat j-4 hat k ,3 hat j-6 hat k and 2 hat i+5 hat j+10 hatk form a tetrahedron in space.

Show that the vectors are mutually perpendicular hat (i) + 2 hat (j) + hat (k) ,hat (i) + hat (j) - 3 hat (k) and 7 hat (i) - 4 hat (j) + hat (k)

The position vectors of the point A ,B ,C and D are 3 hat i-2 hat j- hat k ,2 hat i+3 hat j-4 hat k ,- hat i+ hat j+2 hat k and 4 hat i+5 hat j+lambda hat k , respectively. If the points A ,B ,C and D lie on a plane, find the value of lambda .

Find the vector of length 3 unit which is perpendicular to hat i+ hat j+ hat k and lies in the plane of hat i+ hat j+ hat k and 2 hat i-3 hat j .

If vec a= 2 hat i- hat j+ hat k and vec b = - hat i+3 hat j+4 hat k ,then veca.vecb =

Find the area of triangle whose vertices have position vectors hat (i) + hat (j) + 2 hat (k) , 2 hat (i) + 2 hat (j) + 3 hat (k) and 3 hat (i) - hat (j) - hat (k)

Find | -> axx -> b|, if -> a=2 hat i+ hat j+3 hat k and -> b=3 hat i+5 hat j-2 hat k .