Home
Class 12
MATHS
Prove that [veca+vecb vecb+vecc v...

Prove that `[veca+vecb` ` vecb+vecc` ` vecc+veca]=2[veca vecb vecc]`

Text Solution

Verified by Experts

`[veca+vecb vecb +vecc " " vecc+veca]=(veca+vecb).((vecb+vecc)xx(vecc+veca))`
`=(veca+vecb).(vecbxxveccxxvecbxxveca+veccxxvecc)`
`=[veca vecbvecc]+[vecb veccveca]=2[veca vecbvecc]`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca, vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

i. If vec a , vec b and vec c are non-coplanar vectors, prove that vectors 3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc are coplanar.

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

If a ,ba n dc are three non-cop0lanar vector, non-zero vectors then the value of ( veca . veca ) vecb × vecc +( veca . vecb ) vecc × veca +( veca . vecc ) veca × vecb .

veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. vecb =2 . If vecc = (2vecaxx vecb) - 3vecb then find angle between vecb and vecc .