Home
Class 12
MATHS
If veca=hati+hatj+hatk,hatb=hati-hatj+ha...

If `veca=hati+hatj+hatk,hatb=hati-hatj+hatk,vecc=hati+2hatj-hatk`, then find the value of `|{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|`

Text Solution

Verified by Experts

`|{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|=[veca vecbvecc][vecavecbvecc]=[vecavecbvecc]^(2)`
`|{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|= 4^(2)=16`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Given veca=xhati+yhatj+2hatk,vecb=hati-hatj+hatk , vecc=hati+2hatj, veca botvecb,veca.vecc=4 then find the value of [(veca, vecb, vecc)] .

If vectors veca, vecb and vecc are coplanar, show that |{:(veca, vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc):}|=vec0

If veca=hati-2hatj+3hatk and vecb=-2hati+hatj-2hatk , then the value of |veca xx vecb| is -

If veca=hati+hatj+hatk,vecb=2hatj-hatj+3hatkandvecc=hati-2hatj+hatk , find a unit vector parallel to the vector 2veca-vecb+3vecc .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

vecA= hati & vecB= hatj+hatk , then find out vecA.vecB ?

If veca = hati + hatj + hatk , vecb = hatj - hatk then find a vector vecc , such that veca xx vecc = vecb and veca .vecc = 3 .

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]