Home
Class 12
MATHS
If veca, vecb and vecc are non- coplana...

If `veca, vecb and vecc` are non- coplanar vecotrs, then prove that `|(veca.vecd)(vecbxxvecc)+(vecb.vecd)(veccxxveca)+(vecc.vecd)(vecaxxvecb)|` is independent of `vecd ` where `vecd` is a unit vector.

Text Solution

Verified by Experts

Given `[veca vecb vecc] ne 0 as veca, vecb, vecc` are non- coplanar. Also there does not exist any linear relation between them because if any such relation extists, then they would be coplanar.
`Let " " A=x(vecbxxvecc)+y(vecc xxveca) + z (vecaxxvecb),`
`where " " x=veca.vecd,y=vecb.vecd,x =vecc.vecd`
we have to find value of modulus of `vecA i.e. |vecA|` which is independent of `vecd`.
Multiplying both sides scalarly by ` veca,vecb and vecc`. and knowing that scalar triple product is zero when two vectors are equal, we get
`vecA.veca=x[vecavecbvecc]+0`
putting for x, we get
`(veca.vecd)[vecavecb vecc]=vecA.veca`
similarly , we have
`(vecb.vecd)[vecavecbvecc]=vecA.vecb`
`(vecc.vecd)[veca vecbvecc]=vecA.vecc`
Adding the above relations , we get
`[(veca+vecb+vecc).vecd][vecavecbvecc]=vecA.(veca+vecb+vecc)`
`(veca+vecb+vecc).[vecd[veca vecbvecc]-A vecA=0`
since `veca vecb and vecc` are non-coplanar, `veca+vecb+vecc ne 0` because otherwise any one is expressible as a linear combination of other two, Hence,
`[veca vecbvecc] vecd=vecA`
`|vecA|=|[vecavecbvecc]|as vecd` is a unit vector.
It is independent of `vecd`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecA xx vecB) =_________

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

i. If vec a , vec b and vec c are non-coplanar vectors, prove that vectors 3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc are coplanar.

If vectors veca, vecb and vecc are coplanar, show that |{:(veca, vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc):}|=vec0

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc) = -2[vecb vecc vecd] veca

If veca, vecb, vecc and vecd are unit vectors such that (vecaxx vecb).(veccxxvecd)=1 and veca.vecc=1/2 then