Home
Class 12
MATHS
Prove that vectors vec u=(a l+a1l1) hat...

Prove that vectors ` vec u=(a l+a_1l_1) hat i+(a m+a_1m_1) hat j+(a n+a_1n_1) hat k` ` vec v=(b l+b_1l_1) hat i+(b m+b_1m_1) hat j+(b n+b_1n_1) hat k` ` vec w=(c l+c_1l_1) hat i+(c m+c_1m_1) hat j+(c n+c_1n_1) hat k` are coplanar.

Text Solution

Verified by Experts

`[vecuvecv vecw]=|{:(al=a_(1)l_(1),am+a_(1)m_(1),an+a_(1)n_(1)),(bl+b_(1)l_(1),bn+b_(1)m_(1),bn+b_(1)n_(1)),(cl+c_(1)l_(1),cm+c_(1)m_(1),cn+c_(1)n_(1)):}|`
`=|{:(a,a_(1),0),(b,b_(1),0),(c,c_(1),0):}||{:(l,l_(1),0),(m,m_(1),0),(n,n_(1),0):}|=0`
Therefore, the given vectors are coplanar.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos