Home
Class 12
MATHS
For any four vectors prove that (vecbx...

For any four vectors prove that
`(vecbxxvecc).(veca xxvecd)+(vecc xxveca).(vecbxxvecd)+(vecaxxvecb).(veccxxvecd)=0`

Text Solution

Verified by Experts

`(vecbxxvecc).(vecaxxvecd)=(vecb.veca)(vecc.vecd)-(vecb.vecd)(vecc.veca)`
`(veccxxveca).(vecbxxvecd)=(vecc.vecd)(veca.vecd)-(vecc.vecd)(veca.vecb)`
`(vecaxxvecb).(veccxxvecd)+(veca.vecc)(vecb.vecd)-(veca.vecd)(vecb.vecc)`
`Rightarrow (vecbxxvecc).(vecaxxvecd)+(veccxxveca).(vecbxxvecd)+(vecaxxvecb).(vecc xxvec)=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Prove that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb) .

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

Prove that: [vecaxxvecb vecb xx vecc veccxxveca]=[vecavecbvecc]^2

If veca, vecb and vecc are non- coplanar vecotrs, then prove that |(veca.vecd)(vecbxxvecc)+(vecb.vecd)(veccxxveca)+(vecc.vecd)(vecaxxvecb)| is independent of vecd where vecd is a unit vector.

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca,vecb,vecc and vecd are the position vectors of the vertices of a cycle quadrilateral ABCD, prove that (|vecaxxvecb+vecb xxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))+(|vecbxxvecc+veccxxvecd+vecd xx vecb|)/((vecb-vecc).(vecd-vecc)) =0

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc) = -2[vecb vecc vecd] veca