Home
Class 12
MATHS
If vecb and vecc are two non-collinear s...

If `vecb and vecc` are two non-collinear such that `veca ||(vecbxxvecc)`. Then prove that `(vecaxxvecb).(vecaxxvecc)` is equal to `|veca|^(2)(vecb.vecc)` `

Text Solution

Verified by Experts

`veca||(vecbxxvecc)`
`veca=lambda(vecbxxvecc)and veca=vecabotvecband vecabotvecc`
`Now, (vecaxxvecb).(vecaxxvecc)=|{:(veca.a,veca.vecc),(vecb.veca,vecb.vecc):}|`
`=|{:(veca.veca,0),(0,vecb.vecc):}|=|veca|^(2)(vecb.vecc)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Prove that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb) .

If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|vecb|) is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=3 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If veca, vecb, vecc and vecd are distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecb-vecc)ne 0

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb , then |vecv| is