Home
Class 12
MATHS
Find the vector of length 3 unit which...

Find the vector of length 3 unit which is perpendicular to ` hat i+ hat j+ hat k` and lies in the plane of ` hat i+ hat j+ hat k and 2 hat i-3 hat j` .

Text Solution

Verified by Experts

Given vectors are
`veca=hati+hatj+hatk`
`vecb=hati+hatj+hatk`
`vecc=2hati-3hatj`
vector perpendicular to vectors `vecb and vecc is vecb xx vecc`.
vector perpendicular to `veca and vecb xx vecc is veca xx(vecb xx vecc)` which lies in the pllane of `vecb and vecc`. therefore
`vecaxx(vecbxxvecc)=[(hati+hatj+hatk)xx{(hati+hatj+hatk)xx(2hati-3hatj)}]`
`(hati+hatj+hatk)-3(2hati-3hatj)`
`= - 7 hati + 8 hatj-hatk`
`(vecaxx(vecbxxvecc))/(|vecaxx(vecbxxvecc)|) = (-7hati+8hatj-hatk)/sqrt114`
Required vector = `3(vecaxx(vecbxxvecc))/(|vecaxx(vecb xxvecc)|)=3(-7hati+8hatj-hatk)/sqrt114`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Find the vector alpha which is perpendicular to both 4 hat (i) + 5 hat (j) - hat (k) and hat (i) - 4 hat (j) + 5 hat (k) and which satisfies the relation alpha . beta = 21 where beta = 3 hat (i)+ 5 hat (j) - hat (k)

The , perpendicular vector on both of (3hat i +hat j + 2hat k) and (2hat i -2hat j +4hat k) is:

find the projection of 3hat i - hat j + 4hat k on 2 hat i + 3 hat j -6 hat k

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Find the unit vector perpendicular to the plane vec r.(2 hat i+ hat j+2 hat k)=5.

Vectors perpendicular to hat i- hat j- hat k and in the plane of hat i+ hat j+ hat ka n d- hat i+ hat j+ vec k are hat i+ hat k b. 2 hat i+ hat j+ hat k c. 3 hat i+2 hat j+ hat k d. -4 hat i-2 hat j-2 hat k

The unit vector which is orthogonal to the vector 3 hat i+2 hat j+6 hat k and is coplanar with vectors 2 hat i+ hat j+ hat ka n d hat i- hat j+ hat k is (2 hat i-6 hat j+ hat k)/(sqrt(41)) b. (2 hat i-3 hat j)/(sqrt(13)) c. (3 hat j- hat k)/(sqrt(10)) d. (4 hat i+3 hat j-3 hat k)/(sqrt(34))

Find the unit vector in the direction of the vector vec a= hat i+ hat j+ 2 hat k .

Show that the vectors are mutually perpendicular hat (i) + 2 hat (j) + hat (k) ,hat (i) + hat (j) - 3 hat (k) and 7 hat (i) - 4 hat (j) + hat (k)

The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat k and hat i+2 hat j+ hat k , and perpendicular to vector hat i+ hat j+ hat k , is/are a. hat j- hat k b. - hat i+ hat j c. hat i- hat j d. - hat j+ hat k