Home
Class 12
MATHS
find the angle between the vectors vec ...

find the angle between the vectors `vec a= 3` `hat i`+2 `hat k` and
`vec b = 2 hat i` -2 `hat j` + 4 `hat k`

Text Solution

Verified by Experts

Since `veca,vecb and vecc` are non - coplanar, vectors `vecaxxvecb,vecb xxveccandveccxxveca` are also non-coplanar. Let
`vecd=l(vecbxxvecc)+vecm(veccxxveca)+vecn(vecaxxvecb)`
now multiplying both sides of (i) scalarly by `veca` we have
`veca.vecd=lveca.(vecbxxvecc)+mveca.(veccxxveca)+nveca.(vecaxxvecb)=l[vecavecc veca]([veca vecc veca]=0=[veca veca vecb])`
`l=(veca.vecd)//[veca vecb vecc]`
putting these values oif l,nm and n and (i) , we get the required relation.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Find the cosine of the angle between the vectors vec ( a ) = 3 hat (i) + 2 hat (k) and vec(b) = 2 hat (i) - 2 hat (j) + 4 hat (k)

Find the vector of magnitude 3, bisecting the angle between the vectors vec a=2 hat i+ hat j- hat k and vec b= hat i-2 hat j+ hat kdot

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

find the value of x,y and z so that the vectors vec a= x hat i+ 2 hat j+z hat k and vec b = 2 hat i +y hat j +hat k are equal

Find the area of a parallelogram whose adjacent sides are given by the vectors vec a=3 hat i+ hat j+4 hat k and vec b= hat i- hat j+ hat k .

Find the scalar product of the following pair of vectors and the angle between them : vec (a) = 2 hat (i) - 5 hat (j) + 3 hat (k) and vec (b) = hat (i) - 2 hat (j) - 4hat (k)

Find the scalar product of the following pair of vectors and the angle between them : vec(a) = 2 hat (i) + 3 hat (j) - 4 hat (k) and vec(b) = hat (i) + 2 hat (j) + hat (k)

Find a vector magnitude 5 units, and parallel to the resultant of the vectors vec a=2 hat i+3 hat j- hat k and vec b= hat i-2 hat j+ hat kdot

Find the area of triangle (i) drawn on the vectors vec(a) = 6 hat (i) + 2 hat (j) - 3 hat (k) and vec (b) = 4 hat (i) - hat (j) - 2 hat (k)