Home
Class 12
MATHS
vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxv...

`vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxvecb,vecanevec0,vecbnevec0,vecanelambdavecb and veca` is not perpendicular to `vecb`, then find `vecr` in terms of `veca and vecb`.

Text Solution

Verified by Experts

Writing `vecr` as a linear combination of `veca , vecb and veca xx vecb` . We have
`vecr=xveca+yvecb+z(vecaxxvecb)`
for scalars x,y and z
`0=vecr.veca=x|veca|^(2)+yveca.vecb " " ("taking dot product with "veca)1`
`1- vecr.vecb=xveca.vecb+y|vecb|^(2)" " ("taking dot product with"vecb)`
Solving , we get y `(|veca|^(2))/(|veca|^(2)|vecb|^(2)-(veca.vecb)^(2))=|veca|^(2)`
`and x=(veca.vecb)/((veca.vecb)^(2)-|veca|^(2)|vecb|^(2))=veca.vecb`
Also `1=[vecr vecavecb]=z|vecaxxvecb|^(2) " " ("taking dot product with "vecaxxvecb)`
`z=1/(|vecaxxvecb|^(2))`
`vecr=((veca.vecb)veca-|veca|^(2)vecb)+(vecaxxvecb)/(|vecaxxvecb|^(2))`
`=vecaxx(vecaxxvecb)+(vecaxxvecb)/(|vecaxxvecb|^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Show that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb)

Prove that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb) .

If |veca+vecb|=|veca-vecb| , then show that vectors veca and vecb are perpendicular to each other.

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is

If veca and vecb are unit vectors, then find the greatest value of |veca+vecb|+ |veca-vecb| .

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

Show that |veca|vecb+|vecb|veca is perpendicular to |veca|vecb-|vecb|veca , for any two nonzero vectors vecaandvecb .

If veca and vecb are mutually perpendicular unit vectors, then the value of (3veca-4vecb)*(2veca+5vecb) is -