Home
Class 12
MATHS
vec ba n d vec c are unit vectors. Then ...

` vec ba n d vec c` are unit vectors. Then for any arbitrary vector ` vec a ,((( vec axx vec b)+( vec axx vec c))xx( vec bxx vec c))dot( vec b- vec c)` is always equal to `| vec a|` b. `1/2| vec a|` c. `1/3| vec a|` d. none of these

Text Solution

Verified by Experts

`Let" " vecr=x_(1)veca+x_(2)vecb+x_(3)veccRightarrow vecr.(vecbxxvecc)=x_(1)veca.(vecbxxvecc)or x_(1)=([vecr vecb vecc])/([veca vecb vecc])`.
`Also, " " vecr.(veccxxveca)=x_(2)vecb.(veccxxveca)orx_(2)=([vecrveccveca])/([vecavecbvecc])`
`and vecr.(vecaxxvecb)=x_(3)vecc. (vecaxxvecb)or x_(3)=([vecr vecavecb])/([veca vecbvecc])`
`Rightarrow vecr=([vecrvecb vecc])/([vecavecbvecc])veca+([vecrveccveca])/([vecavecbvecc])vecb+([vecrvecavecb])/([vecavecb vecc])vecc`
`or [vecbveccvecr]veca+[veccvecavecr]vecb+[vecavecbvecr]vecr=[vecavecbvecc]vecr`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Show that ( vec a- vec b)xx( vec a+ vec b)=2( vec axx vec b)dot

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is parallel to vec b- vec c

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Let vec aa n d vec b be unit vectors that are perpendicular to each other. Then [ vec a+( vec axx vec b) vec b+( vec axx vec b) vec axx vec b] will always be equal to 1 b. 0 c. -1 d. none of these

If vec ba n d vec c are two-noncollinear vectors such that vec a||( vec bxx vec c), then prove that ( vec axx vec b) . ( vec axx vec c) is equal to | vec a|^2( vec bdot vec c)dot

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= a. 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,