Home
Class 12
MATHS
If vec a , vec b and vec c are non-copl...

If ` vec a , vec b and vec c` are non-coplanar unit vectors such that ` vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2))` , then the angle between ` vec a and vec b` is a. `3pi//4` b. `pi//4` c. `pi//2` d. `pi`

Text Solution

Verified by Experts

`vecaxx(vecbxxvecc)=(vecbxxvecc)/sqrt2`
`(veca .vecc)vecb-(veca.vecb)vecc=1/sqrt2vecb+1/sqrt2vecc`
Since `vecb and vecc` are non-collinear, comparing coefficients of `vecc` on both sides of (i) , we get
`-veca.vecb=1/sqrt2or veca.vecb=-1/sqrt2`
`(1) (1) cos theta=-1/sqrt2`
Where `theta` is the angle between `veca and vecb` .therefore,
`cos theta=-1/sqrt2or cos theta=cos135^(@)or theta=135^(@)=3pi//4`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b ,and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)), vec b and vec c are non-parallel, then prove that the angle between vec a and vec b, is 3pi//4.

If vec a and vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a and vec b .

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

If vec a and vec b are unequal unit vectors such that ( vec a- vec b)xx[( vec b+ vec a)xx(2 vec a+ vec b)]= vec a+ vec b , then angle theta between vec aa n d vec b is 0 b. pi//2 c. pi//4 d. pi

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec a dot vec x=1, vec b dot vec x=3/2,| vec x|=2. Then find the angle between vec c and vec x

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , , | vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angle between vec a and vec b is pi/6 b. pi/4 c. pi/3 d. pi/2

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=sqrt3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

If vec a , vec b , and vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c| .

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

If vec a , vec b , vec c are unit vectors such that vec a. vec b=0= vec a. vec c and the angle between vec b and vec c is pi/3, then find the value of | vec axx vec b- vec axx vec c| .