Home
Class 12
MATHS
If vec a , vec ba n d vec c are three n...

If ` vec a , vec ba n d vec c` are three non-zero non-coplanar vectors, then the value of `(veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.`

Text Solution

Verified by Experts

As `veca ,vecb and vecc` are non- coplanar, `vecb xx veca,veccxxveca and vecaxxvecb` are also non-coplanar, So, any vector con be expressend as a linear combination of these vectors.
`veca=lambdavecbxxvecc+mu vecc xx veca+ v vecaxxvecb`
`veca.veca=lambda[vecbveccveca],veca.vecb=mu [vecc vecavecb], veca.vecc=v[vecavecbvecc]`
`veca=((veca.veca)vecbxxvecc)/([vecb veccveca])+((veca.vecb)veccxxveca)/([veccvecavecb])+((veca.vecc)vecaxxvecb)/([vecavecbvecc])`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If a ,ba n dc are three non-cop0lanar vector, non-zero vectors then the value of ( veca . veca ) vecb × vecc +( veca . vecb ) vecc × veca +( veca . vecc ) veca × vecb .

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

If veca , vecb and vecc are three non-zero, non- coplanar vectors and vecb_(1)=vecb-(vecb.veca)/(|veca|^(2))veca, \ vecb_(2)=vecb+(vecb.veca)/(|veca|^(2))veca, \ vecc_(1)=vecc-(vecc.veca)/(|veca|^(2))veca+ (vecb.vecc)/(|vecc|^(2))vecb_(1), vecc_(2)=vecc-(vecc.veca)/(|veca|^(2)) veca-(vecbvecc)/(|vecb_(1)|^(2))vecb_(1), \ vecc_(3)=vecc- (vecc.veca)/(|vecc|^(2))veca + (vecb.vecc)/(|vecc|^(2))vecb_(1), vecc_(4)=vecc - (vecc.veca)/(|vecc|^(2))veca= (vecb.vecc)/(|vecb|^(2))vecb_(1) , then the set of mutually orthogonal vectors is

If vec a , vec b and vec c are any three non-coplanar vectors, then prove that points are collinear: veca+ vecb+vecc , 4veca+3vecb ,10veca+7vec b-2vecc .

If veca,vecb ,vecc are any three non- coplanar vectors then the equation [vecbxxvecc veccxxveca vecaxxvecb]x^(2) + [veca+vecb vecb+vecc vecc+veca] x+1 +[vecb-vecc vecc -veca veca -vecb] =0 has roots (A) real and distinct (B) real (C) equal (D) imaginary

If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecA xx vecB) =_________

i. If vec a , vec b and vec c are non-coplanar vectors, prove that vectors 3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc are coplanar.

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .