Home
Class 12
MATHS
prove that if [vecl vecm vecn] are three...

prove that if `[vecl vecm vecn]` are three non-coplanar vectors, then `[veclvecm vecn](vecaxxvecb)= |{:(vecl.veca,vecl.vecb,vecl),(vecm.veca,vecm.vecb,vecm),(vecn.veca,vecn.vecb,vecn):}|`

Text Solution

Verified by Experts

Let `vecl =l_(1)hati + l_(2)hatj +l_(3)hatk, vecm = m_(1)hati + m_(2)hatj + m_(3)hatk`
` vecn=n_(1)hati+n_(2)hatj +n_(3)hatk, veca = a_(1)hati +a_(2)hatj +a_(3) hatk`
`vecb =b_(1)hati , b_(2)hatj+b_(3)hatk,` therefore,
`vecl.veca =l_(1)a_(1)+ l_(2)a_(2) +l_(3)a_(3) = sum l_(1) a_(1) `
similarly `vecl.vecb = suml_(1)b_(1)`.etc.
`now, [vecl vecm vecn] (vecaxxvecb) = |{:(l_(1),l_(2),l_(3)),(m_(1),m_(2),m_(3)),(n_(1),n_(2),n_(3)):}|xx|{:(hati,hatj ,hatk),(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)):}|`
`|{:(suml_(1)hati,suml_(1)a_(1),suml_(1)b_(1)),(summ_(1)hati,summ_(1)a_(1),summ_(1)b_(1)),(sumn_(1)hati, sumn_(1)a_(1),sumn_(1)b_(1)):}|`
`=|{:(vecl,vecl.veca,vecl.vecb),(vecm,vecm.veca,vecm.vecb),(vecn,vecn.veca,vecn.vecb):}|=|{:(vecl.veca,vecl.vecb,vecl),(vecm.veca,vecm.vecb,vecm),(vecn.veca,vecn.vecb,vecn):}|`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercises|15 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Prove that [veclvecmvecn][vecavecbvecc]=|{:(vecl.veca,vecl.vecb,vecl.vecc),(vecm.veca,vecm.vecb,vecm.vecc),(vecn.veca,vecn.vecb,vecn.vecc):}|

If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecA xx vecB) =_________

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

If vectors veca, vecb and vecc are coplanar, show that |{:(veca, vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc):}|=vec0

If veca, vecb, vecc are three given non-coplanar vectors and any arbitrary vector vecr in space, where Delta_(1)=|{:(vecr.veca,vecb.veca,vecc.veca),(vecr.vecb,vecb.vecb,vecc.vecb),(vecr.vecc,vecb.vecc,vecc.vecc):}|,Delta_(2)=|{:(veca.veca,vecr.veca,vecc.veca),(veca.vecb,vecr.vecb,vecc.vecb),(veca.vecc,vecr.vecc ,vecc.vecc):}| Delta_(3)=|{:(veca.veca,vecb.veca,vecr.veca),(veca.vecb,vecb.vecb,vecr.vecb),(veca.vecc,vecb.vecc,vecr.vecc):}|, Delta=|{:(veca.veca,vecb.veca,vecc.veca),(veca.vecb,vecb.vecb,vecc.vecb),(veca.vecc,vecb.vecc,vecc.vecc):}|, "then prove that " vecr=(Delta_(1))/Deltaveca+(Delta_(2))/Deltavecb+(Delta_(3))/Deltavecc

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If veca,vecb ,vecc are any three non- coplanar vectors then the equation [vecbxxvecc veccxxveca vecaxxvecb]x^(2) + [veca+vecb vecb+vecc vecc+veca] x+1 +[vecb-vecc vecc -veca veca -vecb] =0 has roots (A) real and distinct (B) real (C) equal (D) imaginary

CENGAGE PUBLICATION-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercise 2.3
  1. If veca , vecb , vecc and vecd are four non-coplanar unit vectors such...

    Text Solution

    |

  2. prove that if [vecl vecm vecn] are three non-coplanar vectors, then [v...

    Text Solution

    |

  3. If the volume of a parallelepiped whose adjacent edges are vec a=2...

    Text Solution

    |

  4. If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the v...

    Text Solution

    |

  5. If vecx.veca=0 vecx.vecb=0 and vecx.vecc=0 for some non zero vector ve...

    Text Solution

    |

  6. If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the v...

    Text Solution

    |

  7. If veca, vecb,vecc are three non-coplanar vectors such that veca xx ve...

    Text Solution

    |

  8. If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. vecb =0 then prove...

    Text Solution

    |

  9. Prove that (veca.(vecbxxhati))hati+(veca.(vecbxxhatj))hatj+ (veca.(vec...

    Text Solution

    |

  10. For any four vectors, vec a , vec b , vec c and vec d prove that vec...

    Text Solution

    |

  11. If vec a and vec b be two non-collinear unit vector such that vec ...

    Text Solution

    |

  12. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  13. Let veca,vecb and vecc be the non zero vectors such that (vecaxxvecb)x...

    Text Solution

    |

  14. If vec p , vec q , vec r denote vector vec bxx vec c , vec cxx vec a...

    Text Solution

    |

  15. Let veca, vecb , vecc be non -coplanar vectors and let equations veca'...

    Text Solution

    |

  16. Given unit vectors hat m , hat n and hat p such that angel between h...

    Text Solution

    |

  17. veca,vecb, vecc are threee unit vectors and every two are two inclined...

    Text Solution

    |

  18. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati + b(2)hatj + b(3)hat...

    Text Solution

    |