Home
Class 12
MATHS
for any three vectors, veca, vecb and ve...

for any three vectors, `veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca)` =

Text Solution

Verified by Experts

Clearly, vectors `veca - vecb, vecb-vecc, vecc-veca` are coplanar,
`Rightarrow [ veca -vecb vecb- vecc vecc-veca] =0`
Therefore, the given statement is false.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise single correct answer type|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise fill in the blanks|14 Videos
  • DETERMINANTS

    CENGAGE PUBLICATION|Exercise All Questions|262 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|578 Videos

Similar Questions

Explore conceptually related problems

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca, vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |veca||vecb||vecc| holds if and only if

If vecb and vecc are unit vectors, then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecc))xx (vecb xx vecc)) .(vecb -vecc) is always equal to

i. If vec a , vec b and vec c are non-coplanar vectors, prove that vectors 3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc are coplanar.

A, B C and D are four points in a plane with position vectors, veca, vecb, vecc and vecd respectively, such that (veca-vecd).(vecb-vecc)= (vecb-vecd).(vecc-veca)=0 then point D is the ______ of triangle ABC.

If a ,ba n dc are three non-cop0lanar vector, non-zero vectors then the value of ( veca . veca ) vecb × vecc +( veca . vecb ) vecc × veca +( veca . vecc ) veca × vecb .

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

If three unit vectors veca, vecb and vecc " satisfy" veca+vecb+vecc= vec0 . Then find the angle between veca and vecc .

If three unit vectors veca, vecb and vecc " satisfy" veca+vecb+vecc= vec0 . Then find the angle between vecb and vecc .

If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then